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Abstract—In-memory computing (IMC) architectures exhibit
an intrinsic trade-off between computational accuracy and energy
efficiency. This paper determines the fundamental limits on the
compute SNR of MRAM-, ReRAM-, and FeFET-based crossbars
by employing statistical signal and noise models. For a specific
dot-product dimension N , the maximum compute SNR (SNRmax)
is shown to occur at an optimum value of sensing resistance R⇤

s

where clipping and quantization noise contributions from the
analog-to-digital converter (ADC) are balanced out. SNRmax can
be further improved by choosing devices with higher resistive
contrast Roff/Ron, e.g., FeFET, but only until it attains a value
in the range 12-15. Beyond this point, mismatch in the input
digital-to-analog converters (DACs) and bitcell variations begin
to dominate the compute SNR. Finally, by mapping a ResNet-
20 (CIFAR-10) network onto resistive crossbars, it is shown that
the array-level compute SNR maximizing circuit parameters also
maximizes the network-level accuracy.

Index Terms—eNVM, MRAM, ReRAM, FeFET, SNR, in-
memory computing, crossbar

I. INTRODUCTION

In-memory computing architectures (IMCs) have emerged
as an attractive computational platform for machine learning
(ML) workloads due to their ability to overcome the high en-
ergy and latency costs associated with data movement inherent
in such workloads. Emerging embedded non-volatile memory
(eNVM) technologies such as ReRAM, MRAM, and FeFET,
are deemed attractive for IMCs [1]–[16] because of their non-
volatility and high storage density compared to SRAM.

However, these IMCs usually trade-off computational ac-
curacy in order to attain energy efficiency. This trade-off is
intrinsic to all IMCs due to their heavy reliance on analog
computations – a trade-off that is not well-understood today.
Though some work has been done for SRAM-based IMCs
[17], [18] it is not clear what the limits on computational
accuracy of resistive IMCs are. Unlike digital architectures
where accuracy can be conveniently enhanced by assigning
more precision to the computation, there are fundamental
limits to the computational accuracy of resistive IMCs imposed
by various analog non-idealities [6], [11], [15], [16] such
as the resistive contrast (Roff/Ron) of the device type, the
input resistance of the read-out circuit (sensing resistance Rs),
resistive parasitics, readout noise, and the interplay between
these noise sources.

Developing a comprehensive understanding of the limits on
computational accuracy of resistive IMCs is critical in order

to be able to scale-up today’s single-bank macro-level designs
to multi-bank system architectures. Not surprisingly, multiple
approaches to improve the computational accuracy of resistive
IMCs have been proposed [19]–[28]. However, these tend to be
either empirical design approaches or are simulation-based and
therefore are unable to pinpoint the precise limits on accuracy
or the key contributors to such limits.

In this paper, we develop an analytical framework for
obtaining the fundamental limits on the computational accu-
racy of ReRAM, MRAM, and FeFET crossbars. We derive
expressions for the signal-to-noise ratio (SNR) of array-level
computation (compute SNR) based on the circuit architecture
and noise parameters such as the input digital-to-analog con-
verter (DAC) mismatch, bitcell conductance variations, output
clipping noise, and analog-to-digital converter (ADC) quanti-
zation noise. We validate these expressions in a commercial
22 nm node, and employ them to obtain limits on the max-
imum achievable compute SNR as a function of the sensing
resistance Rs, dot-product dimension N , ADC precision, and
the resistive contrast Roff/Ron of the device. Finally, we map a
ResNet-20 (CIFAR-10) network on to resistive crossbars and
demonstrate that the circuit parameter values that maximize
the array-level compute SNR also maximize the network-
level accuracy. This result enables one to design multi-bank
IMC system architectures that can realize deep nets with the
maximum achievable network accuracy without relying on
tedious simulation-based ad-hoc methodologies.

II. BACKGROUND

Resistive crossbar architectures employ bit-lines (BLs) per-
pendicular to source-lines (SLs) with one bitcell (BC) between
each BL-SL pair. The conductance of the bitcell is proportional
to the weight value stored in the cell. The weight value
can be binary (MRAM) or multi-bit (ReRAM, FeFET). The
BC has a 1T1R structure, i.e., a transistor followed by a
resistive memory device. Input vector x is provided via voltage
DACs on the BLs while the weight vector w is stored in a
row. Figure 1(a) shows the circuit model of a voltage-driven
crossbar comprising a transimpedance amplifier (TIA) at the
SL, which performs current-to-voltage conversion, followed by
an ADC. Word-lines (WLs) connecting the gate terminals of
the MOSFETs in the BCs spread across the columns. Multiple
(M ) WLs are activated simultaneously in order to compute
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Fig. 1: The voltage-drive resistive crossbar model: (a) circuit
schematic, and (b) the impact of various noise sources on the
SL current ISL of a ReRAM crossbar with N = 512, Rs =
316⌦, and a 6 b ADC. The noise in ISL leads to incorrect
ADC outputs (red dots in the inset).

M , N -dimensional dot-products or a M ⇥ N matrix-vector
multiplication. IMCs strive to have their ADC output approach
the ideal N -dimensional dot-product yo = wTx.

The resistive contrast of a memory device is defined as
Roff
Ron

where Ron and Roff are the low (on) and the high
(off) resistance values of the device respectively. The resistive
contrast ranges from 2 for MRAM with Ron = 3k⌦ [29], 12
for ReRAM with Ron = 25 k⌦ [14] to 103 for FeFET with
Ron = 1M⌦ [13]. We make the following assumptions for
our SNR analysis:

• the memory device takes binary states Ron and Roff.
• the sensing resistance Rs is equal to the input impedance

of the TIA.
In the case of voltage DAC driven crossbars, the j

th BL is
driven by VDC+Vj , where VDC denotes the bias voltage for the
BL. The input dependent voltage Vj is given by xjVlsb with
xj representing the j

th element of the input vector x, and Vlsb
corresponding to the DAC LSB voltage. The TIA holds the
SL at VDC thereby ensuring Vj voltage across the j

th BC in
each row.

The current on the SL will not be zero for zero dot-product
as the resistance values are finite. In order to remove the

non-zero DC current, the following practices are commonly
used [6], [11]:

• Apply complementary DAC voltage on adjacent columns.
Input to adjacent columns are the same but with opposite
sign i.e. V2k−1 = −V2k 8 k 2 {1, 2, . . . , N}.

• Employ two bitcells (G2k−1, G2k) to store a single
weight bit, where b2k denotes the value stored in bitcell
pair (G2k−1, G2k) given by:

b2k =

8
><

>:

1, if G2k−1 > G2k

0, if G2k−1 = G2k

−1, if G2k−1 < G2k

. (1)

III. COMPUTE SNR ANALYSIS

A. Signal

Applying KCL and KVL at the BLs and SLs in Figure 1(a),
we obtain an expression for the SL current accounting for all
current paths as follows:

Isig =


Rarr

Rarr +Rs

� NX

k=1

V2k∆G2k

!
= SIIideal, (2)

where ∆G2k is expressed as G2k−1−G2k and Iideal denotes the
ideal SL current given by

⇣PN
k=1 V2k∆G2k

⌘
when Rs = 0.

The Thevenin resistance looking into the array at the SL (Rarr)
and the current scaling factor (SI ) are as shown below:

Rarr =
1

P2N
j=1 Gj

;SI =


Rarr

Rarr +Rs

�
. (3)

The expression in (2) can be interpreted as a fraction SI of
Iideal flowing through the sensing circuit with Rs and Rarr
appearing in parallel.

On increasing the number of columns (dot product dimen-
sion) 2N (N), SI decreases as Rarr / 1

N . From (3), it is
observed that reducing Rs increases SI and hence the current.
However, lowering Rs below 500⌦ is challenging due to
significant area overhead.

B. Analog Non-idealities

The SL current in presence of noise can be written as:

ISL = Isig + Inb + Ind + Inc + Inq, (4)

where Isig is the signal current given by (2). The noise sources
(see Fig. 1(b)) are defined as:

• Inb (bitcell conductance variation): is the noise current
appearing on the SL due to variation in Gon and Goff
values.

• Ind (input DAC mismatch): is the input dependent noise
current on SL due to the W/L mismatch in the DAC
fingers with respect to the reference.

• Inc (clipping noise): refers to the noise that arises due to
clipping of the ISL beyond the range (−Iclip, Iclip).

• Inq (ADC quantization noise) ⇠ U(− Iclip

2BADC
,

Iclip

2BADC
),

where U(L,H) denotes the uniform noise between L and
H with BADC being the precision of the ADC.
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Fig. 2: SNR vs. Rs for ReRAM with N = 512 and a 6 b ADC.
The SNR achieves a maximum value SNRmax at Rs = R
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when the clipping and quantization noise are balanced.

We define compute SNR at the SL as:

SNR =
E[I2sig]

E[I2nb] + E[I2nd] + E[I2nc] + E[I2nq]
, (5)

where E is the expectation taken over the joint distribution of
data and noise.

C. Noise Models

The W/L mismatch in the DAC fingers lead to input
dependent noise in the DAC output voltage. We combine
the mismatch of the complementary 2kth DAC pair into one
random variable as:

δV2k ⇠ N
 
0,
p

2|x2k|
✓
σ

µ

◆

Vlsb

Vlsb

!
, (6)

where
⇣


µ

⌘

Vlsb

corresponds to the standard deviation to mean
ratio of mismatch in a single DAC finger, and x2k 2
{−2Bx−1

, . . . , 2Bx−1−1}. We, then obtain Ind by substituting
V2k  V2k + δV2k in (2) as:

Ind =


Rarr

Rarr +Rs

� NX

k=1

δV2k∆G2k

!
. (7)

Conductance variations arise during the fabrication process
causing Gon and Goff to exhibit spatial variations. Denoting
δG2k as the variation in the difference of conductances of the
2kth bitcell pair, we get:

δG2k ⇠ N
 
0,

✓
σ

µ

◆

bc

q
G2

on +G
2
off

!
, (8)

where
⇣


µ

⌘

bc
is the standard deviation to mean ratio of

bitcell conductance variation. Inb is determined by substituting
∆G2k  ∆G2k + δG2k in (2) as:

Inb =


Rarr

Rarr +Rs

� NX

k=1

V2kδG2k

!
. (9)

Note: from (2) conductance variations will also cause varia-
tions in Rarr and hence in Isig independent of the input vector
x.

IV. SIMULATION RESULTS

A. Behavioral Models and Their Validation

The signal and noise models from Sections III-A and III-C
were verified with SPICE simulations of a 1T1R crossbar array
with the MOSFETs from a commercial 22 nm process and
resistances describing the bitcell state. The DAC input uses
a signed 5 b number with Vlsb = 3mV and

⇣

µ

⌘

Vlsb

= 4%.

The
⇣


µ

⌘

bc
for conductance variation was chosen as 4%. The

clipping range of [−2µA, 2µA] is considered for the ADC.
We, then model the DAC mismatch (6) as noise proportional
to the input which is added to the BL voltage. Conductance
variation (8) was modeled as noise in the bitcell resistance.
SPICE simulations return the SL current, which is sampled
across different inputs. Next, we add clipping and quantization
noise to the sampled currents in software. The empirical esti-
mate of compute SNR was obtained by averaging over 10000
(1000) samples in behavioral (SPICE) simulations. Fig. 2
shows that the two estimates match well thereby validating
our behavioral models which are employed for obtaining the
subsequent results in this paper.

B. SNR Dependence on Circuit, and Device Parameters

Figure 2 shows that the maximum SNR (SNRmax) is
achieved when the ADC clipping (Inc) and quantization (Inq)
noise variances are equal at the SNR-optimum value for
the sensing resistance (Rs = R

⇤
s). This trade-off between

clipping and quantization noise occurs because the current
scaling factor SI in (3) increases (decreases) as Rs decreases
(increases) leading to clipping (quantization) when Rs < R

⇤
s

(Rs > R
⇤
s).

Figure 3(a) shows that the SNRmax rolls-off as the dot-
product dimension N increases beyond 500 for MRAM and
2000 for ReRAM. This roll-off occurs because the value of
R

⇤
s reduces as N increases and at some point reaches the

minimum allowable value of Rs,min (assumed to be 1 k⌦). For
higher values of N , Rs = Rs,min 6= R

⇤
s . In case of FeFET, the

R
⇤
s value is large (⇡ 10 k⌦) even for large N (⇡ 103) and

therefore, no roll-off is observed.
Figure 3(b) shows that the minimum ADC precision (B⇤

ADC)
required for achieving SNRmax increases from 6 b for MRAM
to 7 b for ReRAM and FeFET. This increase in B

⇤
ADC occurs

due to an increase (⇡ 5 dB) in the SNRmax for ReRAM
and FeFET compared to MRAM as shown in Fig. 3(a).
Also, increasing BADC (lowering quantization noise) does
not increase SNRmax since DAC mismatch and conductance
variations begin to dominate.

Figure 3(c) demonstrates that the SNRmax increases with
resistive contrast Roff/Ron until a point (12-to-15) and then
saturates. The reason being that both Rarr and SI in (3)
increase with Roff/Ron. This leads to the the signal Isig (2),
DAC mismatch Ind (7), and conductance variations Inb (9)
all increasing proportionally in (5). When Roff/Ron < 12-15
(Roff/Ron > 12-15) E(I2nc) and E(I2nq) terms in (5) are larger
(smaller) compared to E(I2nb) and E(I2nd) resulting in the
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Fig. 4: Surface plot of ResNet-20 (CIFAR-10) accuracy A vs. (Rs2, Rs3) with Rs1 = R
⇤
s1: (a) MRAM (R⇤

s1 = 464⌦), (b)
ReRAM (R⇤

s1 = 835⌦), and (c) FeFET (R⇤
s1 = 8.28 k⌦). The maximum network accuracy Ã and the corresponding circuit

parameters (R̃s2, R̃s3) obtained via exhaustive sweep (blue dot) are both close to those obtained by employing compute SNR
analysis (red dot), i.e., A⇤ and (R⇤

s2, R
⇤
s3).

increasing (constant) SNRmax. Figure 3(c) also indicates that
SNRmax only depends on the resistive contrast and not on the
absolute value of Ron as the effect of increasing Ron affects
both signal and noise equally.

C. System Level Accuracy

This subsection shows that the compute SNR maximizing
values R

⇤
s predicted by our analytical framework at the array-

level also maximizes network accuracy. We map a ResNet-20
comprising of three residual blocks each with 6 convolutional
layers (3⇥3 kernels), and having 16, 32, and 64 input channels
respectively. With 5 b signed inputs and ternary weights, the
network achieves a 84.94% accuracy on CIFAR-10. Following
[25], we map the convolutional layers implementing dot prod-
ucts of dimension N = 144, 288, 576 to three crossbar arrays
consisting of 288, 576, 1152 columns with sensing resistances
Rs1, Rs2, and Rs3 respectively.

Figure 4 plots the empirical ResNet-20 accuracy over a
sweep of (Rs2, Rs3) while setting Rs1 = R

⇤
s1. The maximum

accuracy Ã is achieved at (R̃s2, R̃s3) (indicated by blue dot),
which can only be found via exhaustive search. Interestingly,
the SNR optimal points (R⇤

s2, R
⇤
s3) (indicated by red dot) lie

very close to (R̃s2, R̃s3) for all cases. Furthermore, ResNet-
20 accuracy with SNR optimal parameters A⇤ is within 1%
of the empirical maximum Ã. This shows that maximizing

the array-level compute SNR also maximizes the system-level
network accuracy.

Considering the case of ReRAM in Fig. 4(b), the maximum
CIFAR-10 accuracy of 84.52% is achieved via the exhaustive
search at (R̃s2 = 825⌦, R̃s3 = 383⌦) and SNR analysis re-
turns an accuracy of 84.11% at (R⇤

s2 = 681⌦, R⇤
s3 = 562⌦).

Similar observations are made for MRAM (see Fig. 4(a))
and FeFET (see Fig. 4(c)), indicating the generality of our
analysis across devices. Notably, the maximum accuracy for
our crossbar implementations without retraining is within 2%
of the fixed-point baseline value of 84.94%.

V. CONCLUSION

The analytical framework in this paper enables designers to
obtain SNR optimal resistive IMC crossbar parameters without
relying on expensive trial and error. Our framework also
provides insights such as: 1) increasing device level resistive
contrast provides diminishing returns since the input DAC
and conductance mismatch begin to dominate; 2) inference
accuracy is maximized when quantization and clipping noise
in the ADC are balanced. The proposed framework can be
extended to other resistive IMC architectures and devices.
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