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ABSTRACT

The demand for the deployment of deep neural networks (DNN)
on resource-constrained Edge platforms is ever increasing. Today’s
DNN accelerators support mixed-precision computations to enable
reduction of computational and storage costs but require networks
with precision at variable granularity, i.e., network, layer or kernel
level. However, the problem of granular precision assignment is
challenging due to an exponentially large search space and efficient
methods for such precision assignment are lacking. To address this
problem, we introduce the iterative mixed-precision quantization
(IMPQ) framework to allocate precision at variable granularity. IMPQ
employs a sensitivity metric to order the weight/activation groups
in terms of the likelihood of misclassifying input samples due to its
quantization noise. It iteratively reduces the precision of the weights
and activations of a pretrained full-precision network starting with the
least sensitive group. Compared to state-of-the-art methods, IMPQ
reduces computational costs by 2×-to-2.5× for compact networks
such as MobileNet-V1 on ImageNet with no accuracy loss. Our
experiments reveal that kernel-wise granular precision assignment
provides 1.7× higher compression than layer-wise assignment.

Index Terms— mixed-precision, DNN, quantization

1. INTRODUCTION

In the past decade, we have seen deep neural networks (DNNs)
achieve tremendous success in a wide variety of applications. Due
to concerns in terms of privacy, reliability, and latency, there is an
increasing demand for the deployment of DNNs in battery-powered
mobile and edge devices. However, the large computation and storage
costs of DNNs pose a challenge for such deployment. This challenge
is currently being addressed by the development of a) specialized
accelerators for DNNs, and b) low-complexity DNN. However, these
approaches are often addressed independently and risk being incom-
patible with each other.

Reducing the DNN complexity has been an active area of re-
search. Techniques such as network pruning [1] reduce complexity
by removing redundant weights and computations. However, this re-
sults in an irregular network structure that is challenging to implement
on DNN accelerators that favors regular data-flows. Designing com-
pact network architectures from scratch has been effective in DNN
complexity reduction, e.g., MobileNets [2], SqueezeNet [3], Shuf-
fleNet [4], and ConDenseNet [5]. These networks employ specialized
layers such as depth-wise separable layers, grouped convolutions,
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Fig. 1: Classification accuracy on ImageNet-1k using MobileNet-V1
vs. computational costs (Gbit-OPs). The proposed IMPQ method
achieves a high accuracy with a low computational cost compared to
the state-of-art fixed-point quantization methods (PACT [10], HAQ
[17], UNIQ [18], and RQ [19]).

point-wise convolutions, among others and are designed to achieve
high accuracy with far fewer computations and parameters.

Recently, training methods were developed that use binary and
ternary precision for weights and activations [6, 7]. These techniques
applied to large networks such as VGG-16 and ResNet-18 result in
minimal accuracy drop from their floating-point counterparts. How-
ever, ultra low-precision training applied to compact networks such
as MobileNet-V1 results in a catastrophic accuracy drop [8] and
therefore still remains a challenge.

Conventional quantization techniques [9, 10] use the same num-
ber of bits across all layers. However, the sensitivity of inference
accuracy to quantization noise varies across layers [11], and across
kernels within a layer [12, 13] leading to different per-layer/kernel pre-
cision requirements. This diversity across layers and kernels can be
exploited by variable precision DNN accelerators such as [14, 15, 16].
In fact we find the DNN quantization with precision assigned at a
kernel-level granularity aggressively reduces the computation com-
plexity without minimal loss in accuracy (see Fig. 1).

Granular precision assignment across layers is challenging due
to the search space that increases exponentially with the number of
layers/kernels. For example, an N granular precision assignment will
haveBN possibilities, whereB is the maximum assignable precision.
Therefore, there are greater than 4 billion possibilities for VGG-16
if each layer has four possible precision assignments. To solve this
HAQ and AutoQ [17, 12] uses a reinforcement learning (RL) agent
to pick a precision assignment by iteratively evaluating the network
on a hardware model. HAQ and AutoQ need to train an RL agent
which is computationally expensive.

In this paper, we present the iterative mixed-precision quantiza-
tion (IMPQ) to address the challenge of assigning bit precision in
DNNs at any granularity. IMPQ employs an iterative process, where
in each iteration IMPQ uses sensitivity estimates to assign appropri-
ate precision to weight/activation group and fine-tune the network



with this precision assignment. Though IMPQ can be used at any
granularity, in the rest of the paper we will use kernel-wise precision
assignment for weights and layer-wise for activations. We demon-
strate the effectiveness of our approach with a compact network such
as MobileNet-V1. The benefits of the granular precision assignment
are discussed and demonstrated via experiments.

2. BACKGROUND - NOISE GAIN ANALYSIS

Assessing the sensitivity of weights and activations is a key step in
complexity reduction techniques. Some works have used weight mag-
nitudes [1] or hessian diagonals [13] to determine sensitivity, which
are often not correlated to classification accuracy or computationally
expensive.

One such technique that directly assesses the impact of quanti-
zation on the classification accuracy is noise gain analysis (NGA)
[20, 11]. Given a floating-point baseline and a precision assignment,
NGA provides an analytical upper bound on the mismatch proba-
bility, pm = P (Ŷfx 6= Ŷfl), where Ŷfl and Ŷfx are the class labels
predicted by the floating-point baseline and the fixed-point network,
respectively. This bound on pm is given by:

pm ≤
∑
l

∆2
A,lEA,l +

∑
k

∆2
W,kEW,k (1)

where ∆2
A,l = 2−(BA,l−1), and ∆2

W,k = 2−(BW,k−1) are the quanti-
zation step-size of the set of activationsAl and the set of weightsWk,
respectively. The noise gains EA,l and EW,k quantify the impact
of quantization noise of Al and Wk on the mismatch probability,
respectively. Analytical expressions for the noise gains are given by:
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where Zi is the soft output of the DNN corresponding to the class
label i. Empirically, the noise gains are estimated by taking gradients
with respect to margins on a subset of the training samples during the
standard back-propagation phase of training.

3. ITERATIVE MIXED-PRECISION QUANTIZATION
(IMPQ)

IMPQ employs a four-step iterative process: a) evaluate sensitivity, b)
pick weight/activation groups, c) reduce precision, and d) fine-tune
network.

Sensitivity 
evaluation

Weight
group

selection

Precision 
reduction

Network 
fine-tuning

Fig. 2: The proposed iterative mixed-precision quantization (IMPQ)
methodology.

IMPQ (see Fig. 2 and Algorithm 1) begins with a pretrained
network where weights and activations are quantized with identical
precision across all layers and kernels. The precision of this pre-
trained network is chosen to meet the state-of-the-art accuracy of a

floating-point network, and therefore it is the maximum allowable
precision in the final mixed-precision network. We use the term
weight group or activation group to refer to the granular block having
the same precision. Weight groups can be at a kernel-wise or layer-
wise granularity, and activation groups are at a layer-wise granularity.
Kernel in this work refers to a 3-dimensional filter that is convolved
with the input feature maps to obtain one output feature map.
Sensitivity Evaluation: Sensitivity estimates the impact of perturba-
tions of weights or activations on the classification accuracy. We use
the method proposed in [20, 11] to evaluate the sensitivity to quanti-
zation noise. However, instead of comparing a fixed-point network to
a floating-point network, we are interested in evaluating the impact
of reducing precision for a specific weight group or an activation
group in a quantized network. Therefore, we adapt (2) and (3) for a
quantized network given the predicted class Ŷ as follows:
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Ŷ

)

∂a

∣∣∣2
24|Zi − ZŶ |2

 (4)

MW,k = 2−BW,kE

∑
i∈S

Ŷ
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where MA,l and MW,k are the sensitivities of activation group Al

and the weight groupWk, respectively, SŶ is a set of class labels
excluding Ŷ , and BA,l and BW,k are the precisions of l-th activation
group and k-th weight group, respectively.
Weight/Activation Groups Selection: In the second step of IMPQ
methodology, we use the sensitivity estimated via (4) and (5) to
identify the weight/activation groups that have the least impact on
mismatch probability. There are three possible ways to pick these
weight/activation groups: a) thresholding the sensitivity, b) thresh-
olding mismatch probability, and c) constrain the number of groups
chosen.
Precision Reduction: We reduce the precision of the weight or
activation groups that were chosen in the previous step. This may
result in an accuracy drop that needs to be recovered.
Network Fine-tuning: Here we train the current network usually for
a few epochs on the training data.

Each iteration of IMPQ takes a small step in reducing the overall
precision requirements. The network at the end of each iteration is
used to determine if the complexity is sufficiently reduced as per
the user requirements. The specifics of the experiments and approxi-
mations used for practical implementation of this methodology are
presented in the next section.

4. EXPERIMENTS

We demonstrate the effectiveness of IMPQ with experiments on the
following image classification datasets: 1) CIFAR-10 [21], 2) SVHN
[22], and 3) ImageNet-1k [23]. We choose ResNet-20 [24] and VGG-
Small [25] for classifying the CIFAR-10 dataset, and MobileNet-V1
for classifying the ImageNet-1k dataset.

4.1. Implementation Details

In all our experiments, we train full-precision (FP) baseline networks
from scratch. We use stochastic gradient descent with weight decay
and the same hyperparameters, such as the learning rate, transforma-
tion, and augmentation for all out experiments 1.

1link to PyTorch implementation : https://github.com/gsujankumar/IMPQ

https://github.com/gsujankumar/IMPQ


Algorithm 1 Proposed iterative mixed-precision quantization (IMPQ)
methodology
Input: Neural network architecture f(X,W); floating point reference
weights Wk,f ⊂ Wf ; quantized weights Wk ⊂ W are the k-th weight
group with precision Bw,k; Al ⊂ A are the l-th activation group with pre-
cision Ba,l; training data and labels {(Xj , yj)} where j is index of the
training batch; number of training batches NBatch; number of groups picked
for precision reduction Ngroup; and the number of iterations of IMPQ Niter.
Output: Quantized network weights.
Initialize:Wf ,, BW,k = BW,start and BA,l = BA,start

1: function QUANTIZEDTRAIN
2: i← i+ 1
3: while not converged do
4: y′i ← f(Xi,W) . Forward propagation
5: Evaluate L(W,y′i,yi) . Loss function
6: Wf ←Wf −∇L(W,y′i,yi) . Weight update
7: Wk ← Quantize(Wk,f , Bw,k)
8: i← 0 if (i == NBatch) i+ 1 otherwise
9: end while

10: end function
11: QuantizedTrain() . Train initial network
12: for k := 1 to Niter do
13: z← f(X,W) . Forward propagation
14: Evaluate sensitivity MW,l using (5)
15: SI← SortIdx(MW,l) . Sorts weight groups based on MW,l

16: for n := 1 to Ngroup do
17: r ← SI(n)
18: BW,r ← BW,r − 1 . Reduce precision
19: end for
20: QuantizedTrain()
21: end for
22: Repeat for activations

Quantization: IMPQ works for both uniform and non-uniform quan-
tization. Experiments in this paper use uniform quantization for both
weights and activations. For each weight group we clip the weights
to a range [d,−d] before quantization, where d is a multiple of the

second moment ofWk, given by d = 4
√∑

w∈Wk
w2
/|Wk|.

Activations are unsigned, and are clipped and quantized between
[0, d]. The clipping value d = max(βi + 6γi), where βi and γi are
the shift and scale batch-norm parameters of the i-th feature map,
respectively.
Approximations to sensitivity: Estimating the sensitivity as per
(4) and (5) requires us to estimate the gradients of the weights with
respect to each class probability, making this step complex. Therefore,
we consider the gradients with respect to a 10 classes with the smallest
margins, i.e., the set SŶ in (4) and (5) is a subset of class labels.
Evaluation metrics: We use the following metrics to evaluate the
storage and computation costs of quantized networks:
1) Effective weight/activation precisions (Bw,eff / Ba,eff): Average
weight/activation precision of the network, defined as,

Bw,eff =

∑
k Bw,k|Wk|∑

k |Wk|
Ba,eff =

∑
lBa,l|Al|∑

k |Al|
(6)

2) Computational costs (CC): Average number of bit operations
for the model where each multiply-accumulate operation in a M -
dimensional dot product:

CC =
∑
k

Nk

(
Bw,kBa,k + (Bw,k +Ba,k + log2(M))

)
(7)

where M is the dot product size, Nk, Ba,k and Bw,k are the total
number of max operation, is the activation precision, and weight
precision of that MAC operation associated with k-th weight group,
respectively.

Table 1: Classification accuracy with weight-only quantization.

Dataset : CIFAR 10 Network : ResNet-20
Method Bw,eff FP† Acc. Acc. [%] Change
BWN [26] 1 92.10 90.2 1.90
TWN [6] Ternary 91.77 90.78 0.89
TTQ [7] Ternary 91.77 91.13 0.64
ELQ [27] Ternary 91.25 91.45 -0.20
ELQ [27] 1 91.25 91.15 0.10
DoReFa [9] 3 92.10 91.81 0.29
DoReFa [9] 2 92.10 91.41 0.69
LQ-Net∗ [25] 3 92.00 92.00 0
LQ-Net∗ [25] 2 92.00 91.80 0.20
IMPQ 1.74 92.10 92.00 0.10

Dataset : CIFAR 10 Network : VGG-Small
Method Bw,eff FP† Acc. Acc. [%] Change
BWN [26] 1 93.18 91.77 1.45
TWN [6] Ternary 93.18 92.56 0.62
LQ-Net∗ [25] 2 93.8 93.8 0
IMPQ 1.55 93.1 92.97 0.13

Dataset : SVHN Network : VGG-Small
Method Bw,eff FP† Acc. Acc. [%] Change
BWN [26] 1 97.54 96.22 -1.32
LQ-Net∗ [25] 2 97.54 97.62 -0.08
IMPQ 1.7 97.54 97.58 -0.04

Dataset : ImageNet Network : MobileNet-V1
Method Bw,eff FP† Acc. Top-1 Acc. [%] Change
DeepC [28, 17] 2 70.90 37.62 -33.28
DeepC [28, 17] 3 70.90 65.94 -4.96
DeepC [28, 17] 4 70.90 71.14 0.24
HAQ [17] 2 70.90 57.14 -13.76
HAQ [17] 3 70.90 67.66 -3.24
HAQ [17] 4 70.90 71.74 0.84
IMPQ 2 71.20 66.51 -4.71
IMPQ 3 71.20 68.3 -2.92
IMPQ 4 71.20 70.2 -2.02

∗ nonlinear quantization † reported full precision baseline

4.2. Weight-only Quantization

We first demonstrate the effectiveness of IMPQ with weight-only
quantization. Unlike other techniques such as PACT [10], HAQ [17],
and LQ-Nets [25], we quantize all the layers, including the first and
the last fully connected layers.
Impact of Network Complexity: Figures 3(a) and 3(b) show how
the accuracy and the effective precision change with multiple iter-
ations of IMPQ on ResNet-20 and VGG-Small respectively. The
precision of the initial pretrained network on ResNet-20 and VGG-
Small is 4-b and 2-b, respectively.

At iso-accuracy, IMPQ reduces the effective precision by >42%
with respect to LQ-Net on ResNet-20 (see Table 1). In contrast, over-
parameterized networks such as VGG-Small (17× more parameters
than the more compact ResNet-20) can operate with very few bits
and may not require mixed-precision techniques. Similar results
were observed on the SVHN dataset using the VGG-Small network
architecture.

Similarly, unlike large networks such as VGG-16 that can operate
with ternary precision with minimal loss in accuracy, MobileNet-V1
is sensitive to quantization. For example, we observe a significant
accuracy drop on MobileNet-V1 for Bw,eff ≤ 3 when using Deep
Compression [28] and HAQ [17]. In contrast to HAQ and Deep
Compression, IMPQ is effective even at a lower precision, e.g., the
accuracy of Deep Compression and HAQ atBw,eff = 3 is comparable
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Fig. 3: Classification accuracy on CIFAR-10 using (a) ResNet-20,
and (b) VGG-Small as a function of the effective precision recorded
at the end of each iteration.
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Fig. 4: Classification accuracy on ImageNet-1k using MobileNet-V1
vs. compression ratio (CR) and the granularity of precision assign-
ment. The accuracy of the floating-point network is with no retraining.
The compression ratio is calculated with respect to a fixed point net-
work with 16-b weights.

to the accuracy of IMPQ at Bw,eff = 2. Thus IMPQ leads to a 33%
better compression on MobileNet-V1 for weight-only quantization.
Impact of Granularity: We hypothesize that a granular assignment
of precision would lead to better network compression on the whole.
We study this impact of granularity using the compression ratio (CR)
as a metric, defined as CR = B/Bw,eff, where B is the precision
of a baseline network we are comparing with. The compression
ratio quantifies the reduction in model size for storage with respect
to a baseline network. We applied IMPQ with: 1) layer-wise, 2)
kernel-wise, and 3) network-wise precision allocation. We find that
kernel-wise precision allocation gave the best CR followed by layer-
wise precision allocation, thus supporting our hypothesis (see Fig. 4).

4.3. Weight and Activation Quantization

For the simultaneous quantization of both weights and activations,
we first apply IMPQ with weight-only quantization, and then we
extend to activation quantization. Note that applying the activation
quantization first is also possible. Activations are quantized layer-
wise so that the dot-product computations of the networks can be
mapped to fixed-point hardware.
Layer-wise Trends: Figure 5 shows the layer-wise effective weight
and activation precision of MobileNet-V1 quantized using IMPQ. We
observe the following trends: a) fully-connected layers that constitute
25% of the parameters are aggressively quantized, b) layers closer to
the input image are the most sensitive and hence quantized less, and
c) point-wise layers that have more parameters have fewer bits than
the depth-wise layers. In general, we find that the layers with more
parameters and farther from the input are less sensitive, and hence
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Fig. 5: Effective weight and activation precision across different
layers of MobileNet-V1 used for classifying the ImageNet-1k dataset
after the application of IMPQ. Here DWk and PWk refer k-th depth-
wise and point-wise layers, respectively.

Table 2: Classification accuracy on ImageNet-1k using MobileNet-
V1 with both weights and activations quantized.

Method Bw,eff Ba,eff Top-1 Acc. [%] CC [Gbit-OPs]
PACT [10, 17] 6 6 71.22 34.2
PACT [10, 17] 5 5 67.00 26.8
PACT [10, 17] 4 4 62.44 15.9
HAQ [17] 6 6 70.90 -
HAQ [17] 5 5 70.58 -
HAQ [17] 4 4 67.40 -
UNIQ [18] 8 8 67.50 52.4
UNIQ [18] 5 8 67.50 37.0
UNIQ [18] 4 8 66.00 31.9
RQ [19] 6 6 67.50 34.2
RQ [19] 5 5 61.50 26.8
DBQ∗ [8] 3 8 70.92 21.8
FP Baseline 32 32 71.84 -
FX8 Baseline 8 8 71.86 52.4
IMPQ 6 6 71.24 21.0
IMPQ 5 5 70.65 18.9
IMPQ 4 5.8 69.02 17.7

∗ nonlinear quantization

quantized more heavily.
Comparisons with the State-of-the-Art: Table 2 summarizes the
accuracy and effective precision of both weights and activations
compared to other recent works. The techniques that use identical
precision across the network, such as UNIQ, RQ, and PACT, result
in significant accuracy drop with precision reduction. For example,
PACT observes > 7% accuracy drop going from a 6-b quantization
to a 4-b quantization. This accuracy drop with layer-wise quanti-
zation techniques such as HAQ is 3.5%, while IMPQ’s kernel-wise
quantization results in an accuracy drop of 2.22%.

5. CONCLUSIONS

This paper presents the IMPQ methodology to obtain mixed-precision
networks with precision assignment at arbitrary granularity. IMPQ
was validated with experiments on ResNet-20, VGG-Small for classi-
fying the CIFAR-10 dataset, VGG-Small for classifying the SVHN
dataset, and MobileNet-V1 for classifying the ImageNet-1k dataset.
It was found to be most effective on compact networks and at lower
precision. Next steps include extending IMPQ to DNN training.
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