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Fig. 1. An IMC processor viewed as an array of 𝑁!"#$ IMC banks 
with each bank comprising an array of 𝑁%&' parallel ADC 
columns. An ADC column represents the fundamental unit for 
constructing IMCs.   
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1. Introduction 
Since its inception in 2014 [1], the modern version of in-memory 
computing (IMC) has become an active area of research in 
integrated circuit design globally for realizing artificial intelligence 
and machine learning workloads. Since 2018, > 40 IMC-related 
papers have been published in top circuit design conferences 
demonstrating significant reductions (>20X) in energy over their 
digital counterparts especially at the bank-level. Today, bank-level 
IMC designs have matured but it is not clear what the limiting factors 
are. This lack of clarity is due to multiple reasons including: 1) the 
conceptual complexity of IMCs due to its full-stack (devices-to-
systems) nature, 2) the presence of a fundamental energy-efficiency 
vs. compute SNR trade-off due to its analog computations, and 3) 
the statistical nature of machine learning workloads. The absence of 
a rigorous benchmarking methodology for IMCs – a problem facing 
machine learning ICs in general [2] – further obfuscates the 
underlying trade-offs. As a result, it has become difficult to evaluate 
the novelty of IMC-related ideas being proposed and therefore gauge 
the true progress in this exciting field. 
At their core, IMCs are decision(inference)-making machines. 
Ideally, one should benchmark IMCs using system-level metrics 
such as energy-per-inference (decision energy), latency-per-
inference (decision latency), inference throughput, and inference 
accuracy. Furthermore, since energy, latency, and accuracy trade-
off with each other in all decision-making systems, IMC designers 
need to quantify this trade-off. To do so, requires one to map 
complete deep nets onto IMCs accounting for all associated 
overheads when quantifying these metrics. However, much of the 
reported IMC metrics today are at the bank-level. Therefore, in this 
paper, we will focus primarily on bank-level benchmarking of IMCs. 
Specifically, we propose a rigorous benchmarking methodology for 
IMCs, and employ it to analyze data collected from 50+ publications 
spread across CICC, VLSI and ISSCC since 2018 to explain trends 
and identify challenges in IMC design. Though much of the 
discussion is on SRAM-based IMCs [3]-[30], comparisons are drawn 
with eNVM-based IMCs [31]-[42] and with recent digital accelerators 
[45]-[57].  
2. A Hierarchical View of IMCs 
IMC being a full-stack technology makes it hard to comprehend 
various factors contributing to its overall efficiency. To address this 
conceptual difficulty, we propose a hierarchical view of IMCs shown 
in Fig. 1 where a basic building block of an IMC is referred to as an 
ADC column. An ADC column includes the circuitry and 
computations that precede the input to a single ADC and computes 
an 𝑁-dimensional dot-product. These include row drivers, bitcells, 
precharge, and summing circuitry. An ADC column can be arrayed 
to generate an IMC bank, which in turn can be arrayed to obtain a 
multi-bank IMC processor. This view of IMCs in Fig. 1 emphasizes 
focusing on a single ADC column when evaluating IMCs since the 
bank-level and eventually the processor-level properties are 
inherited from those of the ADC column.  
ADC Column: We begin by defining the key ADC column parameters 
(see Fig. 1) which a designer can choose. Note: these parameters 
describe an ADC column’s per read cycle functionality, e.g., 𝐵( and 
𝐵) are the precisions of the input and weights, respectively, spread 
over 𝑅 rows and 𝐶 columns in diverse ways, and employed during a 
single read cycle to compute an 𝑁-dimensional dot-poduct. Per read 
cycle functionality allows one to distinguish between IMCs realizing 
true multi-bit computations within a bitcell vs. those that compose 
multi-bit dot-products from binary bitcell computations. Similarly, 𝑅' 
(𝐶') refer to the actual number of rows (columns) activated during 
one read cycle. Commonly known as row (column) parallelism, IMCs 
strive to maximize their values to amortize the cost of a memory read 
access over as many computations as possible. The ADC precision 
𝐵%&', when properly chosen, provides a measure of accuracy. 
Next, we define key ADC column metrics (see Fig. 1) that result from  

 
 
 
 
parameter choices made and the specifics of the implementation. 
These include: 1) row (𝑅* = 𝑅'/𝑅) and column (𝐶* = 𝐶'/𝐶) 
parallelism factors; 2) the number of bits processed per read cycle 
(𝐵!"+ = 𝐶' 	𝑅' 	𝐵( = 𝑁𝐵)	𝐵(); 3) the information content at the input 
of the ADC: 
                            𝐵,(!"+) = 𝐵( +𝐵) + log/(𝑁)	                                 (1) 
with exceptions for 1-b operands); 4) energy per column including 
ADC energy (𝐸!"+); 5) latency (𝑇!"+); 6) 1-b Tera OPS (1b-TOPS =
2𝐵!"+/𝑇!"+); 7) 1-b Tera OPS/W (1b-TOPS/W), and 8) compute SNR 
(𝑆𝑁𝑅!"+). Of these, metrics 1)-3) are usually available in publications 
since these refer to design choices. Metrics 4)-7) are hard to 
measure and are almost never reported. We would like to emphasize 
the importance of characterizing all eight metrics to fully explain the 
benefits of any new IMC design method. Note: we employ bit-
normalized metrics (1b-TOPS,1b-TOPS/W, and 1b-TOPS/mm2) to 
enable comparison across IMCs with diverse arithmetic precisions. 
Bank: An IMC bank (core) comprises 𝑁%&' ADC columns operating 
in parallel. Thus, the bank-level parameters: 1) the number of 
columns (𝑁!"+ = 𝑁%&' 	𝐶); and 2) the number of rows (𝑁#"0 = 𝑅), are 
directly inherited from those of a single ADC column.  Some of the 
bank-level metrics such as: 1) the number of bits processed per read 
cycle 𝐵!"#$ = 𝑁%&' 	𝐵!"+, and 2) the information content (𝐵,(!"#$) =
𝑁%&' 	𝐵,(!"+)) are also inherited from those of a single ADC column, 
while others viz. 3) energy efficiency (1b-TOPS/W); 4) throughput 
(1b-TOPS); 5) latency (𝑇!"#$); 6) area (𝐴!"#$); 7) compute density 
(1b-TOPS/mm2) are reported directly. Note: we use the same 
notation for energy efficiency, throughput, and compute density for 
both ADC column-level and bank-level metrics to avoid unnecessary 
proliferation of symbols. 
While one can extrapolate all bank-level metrics from those of an 
ADC column, such extrapolated metrics will not include the 
overheads incurred due to scale-up. However, quantifying the gap 
between extrapolated bank-level metrics and directly measured ones 
does provide useful information regarding the quality of the scale-up 
process.  
Processor: IMC processors or multi-bank IMCs [4]- 
[6],[11],[12],[15],[18],[23],[25] have recently appeared. These report 
metrics at the system-level, e.g., decision energy, throughput, and 
accuracy, but also separately at the bank-level. This should enable 
one to compare the efficiency of the scale-up process. However, 
most do not map complete networks and instead map a few layers 
running the rest in software to obtain accuracy numbers. 
Furthermore, most IMC processor works exploit sparsity to enhance 
energy efficiency and the reported bank level numbers are for a 
specified level of sparsity. The true bank level metrics with full 
utilization are missing. For these reasons, we restrict our attention to 
bank-level metrics even for IMC processors. 
3. Proposed IMC Benchmarking Strategy 
We employ the following strategy when benchmarking IMCs: 

1) All comparisons are made at the bank-level for IMCs and at 
the core level for digital accelerators even for multi-bank 
IMCs and multi-core digital processors. While we have 
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attempted to include as many SRAM- and eNVM-based 
IMC designs, we have considered only the most recent 
digital accelerators (since 2019). 

2) We begin top-down by scaling the reported bank-level 1b-
TOPS/W metrics by the precision factor, i.e., either  𝐵(𝐵) 
or   2𝐵(𝐵) to obtain 1b-TOPS/W to ensure that a multiply-
accumulate is treated as two OPs per standard practice.  

3) Next, we analyze the ADC column architecture to determine 
the column parameters dot product length 𝑁, 𝑅' , 𝐶', 𝐵(, 𝐵), 
and 𝐵%&' per Fig. 1, and derive metrics 𝑅*, 𝐶*, 𝐵!"+, and 
𝐵,(!"+).  

4) Using the reported value of 𝑇!"#$ we compute 1b-TOPS=
2𝐵(𝐵)𝑅'𝑁%&'/𝑇!"#$. This computed throughput is 
compared with reported value. In case of a discrepancy (a 
rare occurrence), we prioritize the computed value. 

5) When the total power is reported, we normalize the bottom-
up computed 1b-TOPS by the reported power and compare 
it with the reported 1b-TOPS/W. In case of a discrepancy (a 
rare occurrence), we prioritize the computed value. 

6) In those cases, where ADC column metrics are not reported 
we defer to the reported bank-level metrics. Furthermore, 
we verify the reported 1b-TOPS/mm2 by normalizing the 
computed 1b-TOPS by the bank area, which is estimated 
from the die photo when it is not reported.    

7) We do not scale the efficiency values by the ADC precision 
or normalize w.r.t. to the technology nodes to preempt 
controversy and only benchmark reported data. 

Next, we present the trends in SRAM-based IMCs. 
4. SRAM-based IMCs 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 shows that the energy efficiency 1b-TOPS/W and the 
compute density 1b-TOPS/mm2 both improve with technology 
scaling. This lays to rest the concern that IMCs may be at a 
disadvantage in advanced nodes due to their analog-heavy 
computations. A couple of outliers are the 16nm 8T1C design [5] and 
the 12nm design [25] whose bank-level metrics seem to be worse 
than other 22nm and 28nm designs simply because these are multi-
bank IMC processors. Another trend, seen in the negative slope of 
the shaded (same technology node) regions, is the role of the bitcell 
(BC) architecture. BCs employing 6T+ topologies, e.g., 8T, 10T, 
8T1C, 10T1C and 18T, achieve higher 1b-TOPS/W but at the 
expense of 1b-TOPS/mm2.  
A key reason underlying the trends in Fig. 2 can be found in Fig. 3 
where one sees designs employing complex BCs generally 
achieving higher throughput (1b-TOPS). This is to be expected since 

one primary benefit of transitioning to 6T+ BCs is the ability to reduce 
the cell currents without being severely impacted by spatial 
variations thereby enabling an increase in the dot product dimension  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑁 within the headroom constraints. Complex BCs such as 8T1C and 
18T leverage this fact to achieve higher 1b-TOPS compared to 6T 
and 8T. Designs with 6T+ BCs that buck these trends, i.e., showing 
lower 1b-TOPS, do so for various reasons, e.g., the 12T design in 
[30] has low array utilization due to the use of a high ADC column 
muxing ratio of 1:64, the 8T design in [17] reports higher latency 𝑇!"#$ 
to improve accuracy. Finally, the 6T+D design [7] achieves higher 
1b-TOPS by performing digital accumulation thereby avoiding 
voltage headroom constraints.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
It would be useful if the bank-level trends in Figs. 2-3 could be 
predicted by specific ADC column level metrics. Indeed, it turns out 
(see Fig. 4) that energy efficiency tracks the information content 
𝐵,(!"+) at the ADC input very closely. We observe a 10 × 
improvement in 1b-TOPS/W per bit increase in 𝐵,(!"+). This trend 
clearly points out to the importance of maximizing the information 
content at the ADC input to maximize energy efficiency.  
5. Comparison Across Architectures 
In this section, we overlay energy-efficiency, compute density and 
throughput metrics for SRAM-based IMCs, eNVM-based IMCs, 
eDRAM-based IMCs, and digital accelerators. Recall – we always 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 1b-TOPS/W vs. 1b-TOPS/mm2 for SRAM-based IMCs 
categorized w.r.t. the technology node and bitcell architecture. 
All the metrics are per bank including those for IMC processors 
(red boxes).   
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Fig. 4. 1b-TOPS/W vs. 𝐵,(!"+) for SRAM-based IMCs.  
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Fig. 3. 1b-TOPS/W vs. 1b-TOPS for SRAM-based IMCs. All 
metrics are per bank including those for IMC processors (red 
boxes). 
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compare bank/core-level metrics throughout this paper even when 
comparing processor architectures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Energy-efficiency vs. Compute Density: Figure 5 shows that SRAM-
based IMCs achieve both the highest bank-level energy-efficiency 
and the highest compute density compared to eNVM-, eDRAM-
based IMCs, and digital accelerators. The best (average) reported 
1b-TOPS/W for SRAM-based IMCs [8] is about 17 × (5.7 ×) higher 
than that for digital accelerators [47] and about 26 × (7 ×) higher than 
that for eNVM-based IMCs [31]. However, as Fig. 5 shows, the 
efficiency gap between the best reported metric for an SRAM-based 
IMC processor (16 bank, 16nm) [5] and that of a comparable digital 
accelerator [57] (16 PE, 16nm) reduces to 3 × (1.7 × when 
comparing to [47]). This clearly indicates that the cost of scaling-up 
IMC designs is quite high today. Though both SRAM-based IMCs 
and digital accelerators benefit from technology scaling (see Fig. 1), 
their slopes may be different. Therefore, it will be interesting to see if 
this efficiency gap widens or reduces in the future. 
Figure 5 also indicates that the best (average) reported compute 
density for SRAM IMCs is about 8.4 × [14] (2.7 ×) greater than that 
of digital accelerators [55] and about 45 × [32] (39.5 ×) when 
compared to eNVMs. Furthermore, eNVM-based IMCs and digital 
accelerators seem to be roughly on par in terms of their energy-
efficiencies. However, eNVM-based IMCs have roughly an order-of-
magnitude lower compute densities compared to digital accelerators. 
This is quite surprising since one of the much-touted advantages of 
eNVM devices is their density. One exception is the PCM crossbar 
[32] utilizing multi-bit weight storage with analog compensation 
techniques to achieve accurate MVM operation in presence of 
analog non-idealities. Thus, today, eNVM-based IMCs lag both 
SRAM-based IMCs and digital accelerators in both energy-efficiency 
and compute densities.   
Energy-efficiency vs. Throughput: The trends in Fig. 5 can be 
explained by comparing the energy-efficiency with throughput 
achieved by the three types of architectures. Figure 6 shows that 
digital accelerators achieve the highest throughput. The best 
(average) reported throughput for digital accelerators is 53 × [52] 
(79 ×) higher than that of SRAM-based IMC [8], and roughly about 
363 × (292 ×) compared to that of eNVM-based IMCs [32], and that 
too at compute densities (Fig. 5) comparable to that of SRAM-based 
IMCs. 
Not shown in Fig. 6 is the role of compute accuracy in determining 
the throughput. Digital accelerators can achieve arbitrarily high 
throughput via scale-up without compromising on their accuracy. 
IMCs, be it SRAM or eNVM-based ones, need to work much harder 
to preserve accuracy during scale-up. Specifically, in case of eNVM-

based IMCs, the throughput is limited by its lower array utilization 
which is required to preserve its accuracy due to the presence of 
analog non-idealities, e.g., the eNVMs in [38][42] which have higher 
1b-TOPS with multi-bit input/weight achieve a low accuracy of ~ 
90%-92% on MNIST. Compute accuracy in presence of analog non-
idealities such as wire parasitics and conductance mismatch is 
negatively impacted. Additionally, the area overhead of  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
peripherals (DAC, sensing, and ADC) tends to be large, e.g., 90% of 
the total bank area in [41], due to the need for high-sensitivity CMOS 
read-out circuitry required to maintain the fidelity of analog 
computations. This further reduces their 1b-TOPS/mm2 in Fig. 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Throughput vs. Power: Finally, it is instructive to compare the 
throughput achieved at a specific power consumption. Figure 7 
shows that all architectures lie between the 101 1b-TOPS/W and 1 
1b-TOPS/W iso-efficiency lines with throughput increasing in 
proportion to power consumption. Digital accelerators lie towards the 
upper end of the throughput and power axes, followed by SRAM-
based IMCs and then eNVM-based ones. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. 1b-TOPS/W vs. 1b-TOPS/mm2 categorized with respect 
to SRAM-, eNVM-, eDRAM-based IMCs and digital accelerators. 
The centroids (1b-TOPS/mm2, 1b-TOPS/W) for each cluster are 
at: SRAM (146.2, 2011.1), eNVM (3.7, 282.5) and digital (54.6, 
349.7). 
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Fig. 6. 1b-TOPS/W vs. 1b-TOPS categorized with respect to 
SRAM-, eNVM-, eDRAM-based IMCs and digital accelerators. 
The centroids (1b-TOPS, 1b-TOPS/W) for each cluster are at: 
SRAM (11.5, 1881.7), eNVM (3.1, 282.5) and digital (904, 
349.7).  
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Fig. 7. 1b-TOPS vs. power (W) categorized with respect to 
SRAM-, eNVM-, eDRAM-based IMCs and digital accelerators. 
The centroids (mW, 1b-TOPS) for each cluster are at: SRAM 
(4.9, 11.5), eNVM (12.6, 3.1) and digital (4800,904).  
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Embedded DRAM (eDRAM)-based IMCs have recently appeared 
[43][44]. These employ charge redistribution methods for computing 
dot products. The design in [43] repurposes the 1T1C eDRAM array 
for IMC has low array utilization (lower 1b-TOPS) to avoid destructive 
reads whereas [44] proposes a 3T dynamic analog RAM using multi-
bit weights, and adaptive ADC skipping techniques to achieve higher 
TOPS while preserving the accuracy. These emerging methods 
seem to be promising since they achieve energy-efficiencies and 
compute densities comparable to mainstream SRAM-based IMCs in 
spite of being implemented in 65nm CMOS. 
FeFETs-based IMCs [33][34] are being proposed but we do not 
include them in our charts since the reported metrics are based on 
simulations. A complete FeFET-based IMC has yet to be published.  
6. Measuring IMC Accuracy 
As mentioned in Section 1, IMCs being decision-making machines 
exhibit an inherent trade-off between energy-efficiency, latency, and 
accuracy. Therefore, a notable omission in Figs. 2-4 is the accuracy 
achieved at a specified level of 1b-TOPS/W or 1b-TOPS. This 
omission is a glaring weakness in IMC design today since no papers 
measure or report the compute SNR 𝑆𝑁𝑅!"+ of an ADC column (see 
Fig. 1) alongside energy-efficiency in their comparison tables. Unlike 
digital accelerators that can realize an arbitrary level of accuracy 
simply by scaling up precision, IMCs trade-off their compute SNR for 
energy-efficiency gains. Thus, it is critically important for IMC works 
to report the 3-tuple (energy-efficiency, throughput, accuracy).  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IMC’s accuracy needs to be reported at both the bank-level (compute 
accuracy 𝑆𝑁𝑅!"+) and at the network level (e.g., probability of correct 
decision 𝑃2). 
Compute Accuracy (𝑆𝑁𝑅!"+): In the following, we assume a fixed-
point digital computation as the baseline, i.e., the ideal output 𝑦" =
𝐰3𝐱 of a 𝐵( × 𝐵)-bit 𝑁-dimensional dot-product computation with an 
output precision of 𝐵( +𝐵) + log/𝑁, i.e., 𝐵,(!"+). Thus, IMCs can be 
compared directly with digital accelerators, e.g., with an 4b x 4b 𝑁-
dimensional digital dot-product computation, both in terms of energy-
efficiency, throughput, and accuracy. 
The compute SNR 𝑆𝑁𝑅!"+ of an ADC column is given by [58]: 

  𝑆𝑁𝑅!"+ = [1/𝑆𝑁𝑅% + 1/𝑆𝑁𝑅%&' 	)]45 = 𝜎6!
/ /𝜎$/                      (2) 

where 𝑆𝑁𝑅% is the analog (pre-ADC) SNR representing the true 
upper bound on 𝑆𝑁𝑅!"+ and 𝑒 = 𝑦" − 𝑦78! is the error between the 
IMC (ADC) output 𝑦78! and the ideal digital output 𝑦". The analog 
SNR 𝑆𝑁𝑅%, which includes all analog non-idealities as seen at the 
ADC input, will drop as a function of the dot-product dimension 𝑁, 
𝐵(, and 𝐵) since the increased output dynamic range still needs to 
fit within headroom constraints. This is the intrinsic 𝑆𝑁𝑅!"+ vs. 
energy-efficiency trade-off in IMCs. The term 𝑆𝑁𝑅%&' in (1) is the 
ADC signal-to-noise ratio.  

To minimize the column ADC’s energy overhead, one needs to 
design ADCs with minimum required 𝑆𝑁𝑅%&', i.e., fully exploit the 
SNR vs. energy trade-off exhibited by ADCs. The ADC’s SNR can 
be tuned by adjusting the input clipping range [58][65] and its 
precision 𝐵%&', among others, to account for the fact that for large 𝑁, 
the ADC input signal has a distribution with a small variance relative 
to its dynamic range. This eventually results in ADCs being noise-
limited [66]. Ideally, the 𝑆𝑁𝑅%&' needs to be sufficiently greater than 
𝑆𝑁𝑅% so that 𝑆𝑁𝑅!"+ → 𝑆𝑁𝑅%, e.g., if 𝑆𝑁𝑅%&' > 𝑆𝑁𝑅% + 9dB, then 
𝑆𝑁𝑅!"+ lies within 0.5dB of 𝑆𝑁𝑅%. Since measuring 𝑆𝑁𝑅% directly is 
difficult, IMC designers can measure 𝑆𝑁𝑅!"+ directly by comparing 
the ADC column output 𝑦78! with the ideal digital computation 𝑦" per 
(2) and increase 𝑆𝑁𝑅%&' until 𝑆𝑁𝑅!"+ saturates.  
A valid question to ask is: what is a good 𝑆𝑁𝑅!"+ to achieve? Prior 
work [59][60] indicates that the signal-to-quantization-noise ratio 
(SQNR) of fixed-point dot-product computations needs to fall in the 
range [10	dB, 40	dB] in order for the inference accuracy of a fixed-
point implementation to be within 1% of the corresponding floating-
point implementation for popular DNNs (AlexNet, VGG-9, VGG-16, 
ResNet-18) deployed on the ImageNet and CIFAR-10 datasets. 
Therefore, IMC designs need to ensure that 𝑆𝑁𝑅!"+ ∈ [10	dB, 40	dB] 
to be assured that network accuracy will be close to that of floating-
point implementations of the same network.  
Currently, the approach described above is not followed and 𝑆𝑁𝑅!"+ 
is typically not reported in IMC publications ([10][18] being rare 
exceptions). Therefore, as a proxy for 𝑆𝑁𝑅!"+, we compare 𝐵%&' with  
𝐵,(!"+) in Fig. 8, where we find that 𝐵%&' < 𝐵,(!"+) and in fact in many 
cases 𝐵%&' ≪ 𝐵,(!"+). Note that in an ideal noiseless scenario, i.e., 
𝑆𝑁𝑅% → ∞, one expects to see 𝑆𝑁𝑅!"+ → ∞ when 𝐵%&' ≥ 𝐵,(!"+). In 
practice, 𝑆𝑁𝑅% is finite and 𝐵%&' ≪ 𝐵,(!"+) indicating that bank-level 
compute accuracy 𝑆𝑁𝑅!"+ is quite limited in most cases and IMC 
designers rely on the inherent error-tolerance of machine learning 
algorithms to achieve the desired level of network accuracy.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Network Accuracy (𝑃2): IMC papers typically report accuracies for 
specific datasets, e.g., VGG-16 on CIFAR-10. However, it is not clear 
whether the entire network was mapped onto the IMC or just a few 
layers with the rest implemented in software. A more serious issue is 
that IMC papers do not report the number of input samples used 
during chip testing to obtain network accuracy. The reason being in 
a limited sample scenario, the accuracy 𝑃2 (probability of correct 
decision) itself is a random variable with a mean and variance. For 
this variance to be small, it is important that two conditions be 
satisfied: 1) the input vectors be randomly sampled from the dataset, 
and 2) the number of samples be sufficiently large. If any of these 
two conditions are violated, then the reported accuracy will be either 
biased or have a large variance.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. 𝐵%&'   vs. 𝐵,(!"+) for SRAM IMCs categorized with respect 
to technology node. 
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Fig. 9. Confidence interval (𝐶,) and confidence level (𝐶9) vs. 
number of test samples 𝑀.  
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For example, it is well-known that some inputs are easy to classify 
compared to others since their feature vectors lie far from the 
decision boundary of the network. If such ‘friendly’ inputs are cherry-
picked for testing an IMC then its reported accuracy will be artificially 
inflated. For instance, one can operate the IMC at a low compute 
SNR to achieve high energy-efficiency. Then choose ‘friendly’ inputs 
to achieve high accuracy in the presence of a perturbed decision 
boundary caused by the IMC’s low compute SNR. 
A second issue is the large variance in 𝑃2 if the number of test 
samples are small. IMCs report one accuracy number obtained 
ostensibly by testing over what is most likely a small subset of the 
dataset. Thus, the reported accuracy is one sample of a potentially 
large variance random variable. For this reason, IMC works need to 
report the confidence interval (0 < 𝐶, < 1) and confidence level (0 <
𝐶9 < 1) when reporting 𝑃2, e.g., “we achieve an accuracy of 90%±
1% at a confidence level of > 95%”.  
Assuming the misclassification errors are independent Bernoulli coin 
flips, one can show via the Chebyshev inequality that the minimum 
number of test samples 𝑀 needed to achieve a detection accuracy 
𝑃2 ± 𝐶, with a confidence level of 𝐶9 is given by: 
                                 𝑀 > 1/[4(1 − 𝐶9)𝐶,/	]                                    (4) 
Equation (3) indicates that 𝐶, and 𝐶9 trade-off with each other when 
the number of test samples 𝑀 is fixed. Figure 9 shows that we need 
to test at least 50,000 test images to claim that the true accuracy lies 
within ±1% (confidence interval) of the reported accuracy with a 
confidence level of > 95%. We suggest fixing the confidence level to 
a preset value, e.g., 95% or higher, and then reporting the measured 
accuracy along with the associated confidence interval. If very few 
test vectors are chosen, then the confidence interval will be large, 
e.g., 𝐶, = 3% if only 5500 test images are chosen.  
Finally, it is highly recommended that as a community we establish 
a benchmark set of pre-trained fixed-point networks (IMC test 
networks) with an associated subset of pre-selected ‘hard’ inputs 
(IMC test set) per dataset. The size of the IMC test set can be chosen 
to meet commonly agreed upon specifications on 𝐶9 and 𝐶,. Such a 
step will ensure uniformity and confidence in the reported IMC 
accuracies.  
7. Discussion and Summary 
This paper has presented a hierarchical view of IMCs that employs 
an ADC column as the basic unit and associated metrics. Motivated 
by this view, an IMC benchmarking methodology was presented and 
employed to analyze 40+ IMC IC works that appeared in CICC, VLSI, 
ISSCC (and ESSCIRC) since 2018. Comparisons were made 
between SRAM-, eNVM-based and recent digital accelerators. Key 
findings of our study are summarized below: 

1) Bank-level SRAM-based IMC design methods are mature 
and have demonstrated clear wins in terms of energy-
efficiency (17 × in 1b-TOPS/W) and compute density (8 × 
in 1b-TOPS/mm2) over digital accelerators when the 
comparisons are made at the bank-level. However, the 
bank-level gap in energy-efficiency reduces to < 2 × when 
comparing IMC processors with digital accelerators. 

2) Despite their analog-heavy computation and contrary to 
conventional wisdom, SRAM-based IMCs benefit from 
technology scaling, i.e., their energy-efficiency and 
compute density both improve in advanced nodes. 6T+ 
SRAM bitcells tend to enhance energy-efficiency in the 
same technology node but at a cost to compute density. 

3) eNVM-based IMCs lag behind both SRAM-based IMCs and 
digital accelerators in terms of energy-efficiency and 
compute density due to the challenges associated with 
compute accuracy that arise when enhancing row-
parallelism.  

4) Compute accuracy of IMCs is a neglected issue. Energy-
efficiency, compute density and throughput need to be 
measured at a pre-specified accuracy. Metrics such as 
compute SNR 𝑆𝑁𝑅!"+ need to be quantified and employed 
to predict accuracy of networks being mapped.  

5) Testing of IMCs to obtain network accuracy needs to report 
confidence levels and confidence intervals to be rigorous. 

We suggest fixing the confidence level to a preset value, 
e.g., 95% or higher, and then reporting the measured 
accuracy along with the associated confidence interval. 

6) An IMC benchmark suite is much needed for consistency 
and to evaluate progress in the field. Such a suite will 
consist of a set of pre-trained fixed-point networks (IMC test 
networks) with an associated subset of pre-selected ‘hard’ 
inputs (IMC test set) per dataset. The size of the IMC test 
set can be chosen to meet commonly agreed upon 
specifications on the confidence level, e.g., > 95%, and 
confidence interval, e.g., < 1%. Such a step will ensure 
uniformity and confidence in the reported IMC accuracies. 

A criticism of this paper can be that the causes underlying the data-
driven trends presented here has not been fully investigated or 
elaborated upon. Doing so requires a deeper study of various IMC 
compute models and circuit methods (see [61][62]) which is beyond 
the scope of this paper. 
Despite much progress since the publication of [1], the area of IMC 
design remains full of potential and numerous opportunities. Most of 
these will require collaborations between researchers in relevant 
areas. Future opportunities for IMC research include [area required 
to collaborate are indicated in square brackets]:  

1) Fully understanding and quantifying the fundamental 
efficiency vs. accuracy trade-offs in various IMCs (see 
[63][61]). This includes minimizing ADC energy by tailoring 
its SNR to that of the column computation (see [58][65][66]). 
[circuits, statistical analysis]  

2) Developing algorithmic approaches such as statistical error 
compensation (SEC) [27][64] to enhance the accuracy of 
IMCs beyond what is possible via purely circuit 
optimization. [circuits, communications] 

3) Designing IMCs on emerging devices such as MRAM, 
FeFET and others. Specifically, tailoring device properties 
to enable massive row-parallelism with minimal impact on 
accuracy. [semiconductor devices, circuits] 

4) Developing methodologies to scale-up IMCs without losing 
their bank-level efficiencies while meeting end-to-end 
network/application-level accuracy requirements. [circuits, 
microarchitecture, statistical analysis] 

5) Developing efficient application-to-IMC architecture 
mapping methods (see [67]) to fully exploit the inherent 
parallelism in multi-bank IMC processors while meeting 
accuracy requirements. [compilers, microarchitecture] 

6) Exploring the design of hybrid IMC and spatial architectures 
that leverage their respective strengths to effectively exploit 
parallelism, reuse, and sparsity opportunities afforded by AI 
workloads. [circuits, microarchitecture, machine learning] 

7) Developing machine learning algorithms intrinsically 
tailored for IMCs. [machine learning, microarchitecture] 

8) Exploring applications beyond AI where high precision (> 
12b) computation is required, e.g., signal processing, 
communications, security, scientific computing, and others. 
[applications, algorithms] 

While the full-stack nature of IMCs provides numerous opportunities 
to devices researchers, analog/mixed-signal designers, architects, 
system, and algorithm designers, it also presents a formidable 
challenge in quantifying progress in the field. It is hoped that this 
paper brings together the IMC design community to engage in a 
robust discussion on the topic of establishing rigorous benchmarking 
and evaluation strategies for IMCs so as to ensure its continued 
growth moving forward.  
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