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Abstract

A reliable high-speed bus employing low-swing signal-
ing can be designed by encoding the bus to prevent crosstalk
and provide error correction. In this paper, we present fun-
damental limits on the number of wires required to achieve
joint crosstalk avoidance and error correction in on-chip
buses. We propose a code construction that results in prac-
tical encoding and decoding schemes with the number of
wires being within 35% of the fundamental limits. The
proposed codes, when applied to a 10-mm 32-bit bus in a
0.13-µm CMOS technology with low-swing signaling, pro-
vide 2.14× speed-up and 27.5% energy savings without any
loss in reliability.

1 Introduction
Interconnects such as global buses in deep submicron

(DSM) system-on-chip (SOC) designs consume significant
amounts of power [1–3] and have large propagation de-
lays [2, 4]. Power consumption and delay in buses are ex-
pected to increase in future technologies due to increasing
interconnect densities and die sizes. Therefore, design of
high-speed low-power buses is a critical problem in the de-
sign of high-performance and/or low-power SOCs.

Coding has emerged as a promising solution to power,
delay, and reliability problems in global buses. Past work
in this area includes coding for: 1.) low-power buses
through self [5, 6] and coupling [7–9] transition activity
reduction (low-power codes (LPCs)), 2.) delay reduction
[9–12] (crosstalk avoidance codes (CACs)), and 3.) im-
proved reliability in low-swing buses (error-control codes
(ECCs)) [13, 14].

Coding involves mapping k data/information bits to n
code bits resulting in an (n,k) code having a code rate of
k/n. This mapping can involve memory. However, codes
with memory, in general, suffer from error propagation at
the decoder. Therefore, we focus on memoryless codes in
this paper. The design of memoryless codes boils down to
determining a subset C of size/cardinality 2k consisting of
n-bit vectors derived from the set S of all possible 2n n-bit
vectors. The codewords in C , referred to as the codebook,

provide delay, power, or reliability benefits by satisfying
specific constraints. For example, a (n,k, p) CAC achieves
delay reduction by reducing the worst-case delay of a bus
from (1 + 4λ)τ0 to (1 + pλ)τ0, where τ0 is the delay of a
crosstalk-free bus line, λ is the ratio of the coupling capac-
itance to the bulk capacitance, and p = 1,2, or 3 is referred
to as the maximum coupling. Similarly, a (n,k,d) ECC im-
proves the reliability of buses by increasing the minimum
distance d [15]. Codes with minimum distance d = 3 are
of specific interest as they achieve single error correction.
Codes have been proposed [16, 17] that reduce delay and
improve reliability/power simultaneously. Such joint codes,
denoted as a (n,k, p,d) codes, need to satisfy dual con-
straints of maximum coupling p and minimum distance d.

A key drawback of coding is the area overhead due to the
additional (n− k) bus wires. Therefore, it is important to
determine the theoretically minimum number of lines nmin
needed to encode k bits while satisfying the maximum cou-
pling p and/or minimum distance d constraints. Specific
variations of this problem have been solved. For example,
in [9], asymptotic bounds on k/n were derived for the three
types of (n,k, p,−) CACs. However, these bounds do not
provide us with the minimum number of wires needed to
encode a given k-bit bus. In [10, 11], nmin has been derived
for the specific case of an (n,k,2,−) CAC. Error-control
coding theory [15] provides bounds on nmin for (n,k,−,3)
ECCs.

In this paper, we first present nmin for (n,k,1,−) and
(n,k,3,−) CACs thereby filling the gap in existing theory.
Employing these results, we propose bounds on nmin for the
general case of an (n,k, p,d) code thereby solving this prob-
lem in its entirety. From an implementation point of view,
two challenges in approaching nmin are the lack of a suitable
code construction and the complexity of the codec circuits.
In this paper, we present a code construction and derive sev-
eral practical (n,k, p,d) codes that can be used in the design
of high-speed reliable low-swing buses. The performance
of these practical codes is evaluated using a standard 0.13-
µm CMOS technology.

2 Background
The minimum number of wires nmin for a given k-bit

bus is determined by first finding the largest codebook
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C (n, p,d) of n-bit vectors that satisfies the constraints on
maximum coupling p and minimum distance d. Since
C (n, p,d) needs to have at least 2k codewords to encode a
k-bit bus, nmin is given by

nmin = n : |C (n, p,d)| ≥ 2k. (1)

In this section, we review past work on the minimum
number of wires nmin for (n,k,2,−) CAC and (n,k,−,3)
ECC.

2.1 CAC with p = 2
Crosstalk avoidance codes proposed in [11] reduce the

maximum coupling to p = 2 by ensuring that a transition
from one codeword to another codeword does not cause ad-
jacent wires to transition in opposite directions. We refer to
this condition as forbidden transition (FT) condition. Codes
that satisfy the FT condition are referred to as forbidden
transition codes (FTC). It has been shown in [11] that the
size of the largest n-bit codebook satisfying the FT condi-
tion is

|C (n,2 (FT),−)| = F(n + 2), (2)

where F(n) is the Fibonacci sequence satisfying

F(n) = F(n−1)+ F(n−2), for n ≥ 3 (3)

with initial conditions F(1) = F(2) = 1. Therefore, nmin
satisfies

nmin = n : F(n + 2)≥ 2k for p = 2(FT). (4)

Worst-case delay of (1 + 2λ)τ0 can also be achieved
by avoiding bit patterns 010 and 101 from every code-
word [10]. This condition is referred to as forbidden pattern
(FP) condition and codes that satisfy the FP condition are
called forbidden pattern codes (FPC). The size of the largest
codebook satisfying the FP condition is |C (n,2 (FP),−)| =
2F(n + 1) [10] and, therefore, nmin satisfies

nmin = n : 2F(n + 1)≥ 2k for p = 2 (FP). (5)

For (n,k,2,−) CACs, code constructions exist that can
be used to achieve nmin. However, encoding all bits at once
using CAC is infeasible for large buses due to prohibitive
complexity of the codec circuits. Therefore, partial cod-
ing [10, 11] is employed, in which the bus is broken into
sub-buses of smaller width which are encoded into sub-
channels. These sub-channels are then combined in such
a way so as to avoid crosstalk delay at their boundaries.

2.2 Error correction coding (ECC)
A (n,k,−,3) code provides single error correction by

increasing the minimum distance to d = 3. The problem
of finding the largest codebook C (n,−,3) satisfying d = 3
is unsolved [15]. Instead, an upper bound on the value of
|C (n,−,3)| can be obtained. The upper bound, referred to
as Hamming bound, is computed by analytical methods and
is given by [15]

|C (n,−,3)| ≤ 2n

n + 1
. (6)

Time t:

Time t+1: 0 1 X

1 0 0

1 1 0

1 0 1

1 1 1

0 0 0

1 0 1

1 0 X

bit boundary

X

Figure 1. Forbidden transitions for p = 1.

Therefore, nmin satisfies

nmin = n :
2n

n + 1
≥ 2k for d = 3. (7)

A Hamming code [15] is an example of single error cor-
recting codes. Hamming codes are linear and systematic.
In systematic codes, redundant/parity bits are added to the
input bits, which are unchanged, to generate the codeword.

3 Crosstalk Avoidance Coding
In this section, we first present the conditions on the

codewords required to achieve p = 1 and 3 and, then, de-
rive nmin for (n,k,1,−) and (n,k,3,−) codes.

3.1 CAC with p = 1
The analysis [9] of all possible transitions on a wire and

its two adjacent wires shows that maximum coupling p = 1
can be achieved if and only if the transitions ↓↑×, −↑−,
and ↑−↑ (and their complements) are avoided. Here, ↑, ↓,
−, and × denote 0-to-1 transition, 1-to-0 transition, no tran-
sition, and don’t-care transition, respectively.

Examples of bit patterns resulting in such transitions
are shown in Figure 1. Clearly, the transition ↓↑× can be
avoided if a codeword with 01 pattern does not transition to
a codeword 10 pattern at the same bit boundary. Thus, the
codebook cannot have both 01 and 10 at the same boundary
(FT condition). We refer to a bit boundary as 01-type if the
codebook has 01 patterns in some codewords at that bound-
ary but has no 10 patterns in any of codewords. Similarly,
a bit boundary is of 10-type if 10 appears at that boundary
in some codewords but 01 does not appear in any of the
codewords.

The second example in Figure 1 imposes the additional
constraint that two adjacent bit boundaries in the codebook
cannot both be of 01-type or 10-type. The last two exam-
ples in Figure 1 require avoiding patterns 010 and 101 (FP
condition). Thus, the codebook C (n,1,−) satisfies FT, FP,
and the following condition.

Forbidden adjacent boundary pattern (FABP) condi-
tion: Two adjacent bit boundaries in the codebook cannot
both be of 01-type or 10-type.

Codes satisfying the above conditions are referred as one
lambda codes (OLC). The simplest OLC is duplication and
shielding, where every bit is duplicated and shield wires are
inserted between adjacent pairs of duplicated bits.

Here, we state a theorem on the fundamental limit nmin
for (n,k,1,−) CACs without proof. A proof of the theorem
is presented in [18].
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Theorem 1. A (n,k,1,−) code has an nmin given by

nmin = n : G(n) ≥ 2k for p = 1, (8)

where G(n) is a sequence satisfying

G(n) = G(n−1)+ G(n−5), for n ≥ 6 (9)

with initial conditions G(1) = 2, G(2) = 3, G(3) = 4,
G(4) = 5, and G(5) = 7.

3.2 CAC with p = 3
A wire has delay (1 + 4λ)τ0 if and only if it has a ris-

ing (falling) transition when both its neighboring wires have
falling (rising) transitions. Therefore, the maximum cou-
pling can be reduced to p = 3 if transitions ↓↑↓ and ↑↓↑ are
avoided. This can be done if and only if a codeword hav-
ing the bit pattern 010 does not transition to another code-
word having the pattern 101 at the same bit position and
vice versa. Thus, the codebook C (n,3,−) needs to satisfy
the following necessary and sufficient condition.

Forbidden overlap (FO) condition: The codebook can-
not have both 010 and 101 appearing centered around any
bit position.

Codes that satisfy the above condition are referred to as
forbidden overlap codes (FOC). The simplest FOC is half-
shielding, where a shield wire is inserted after every two
wires.

Theorem 2. A (n,k,3,−) code has an nmin given by [18]

nmin = n : T (n + 2)≥ 2k for p = 3, (10)

where T (n) is the tribonacci number sequence satisfying

T (n) = T (n−1)+ T(n−2)+ T(n−3), for n ≥ 4 (11)

with initial conditions T (1) = 1, T (2) = 1, and T (3) = 2.

4 Joint Codes
A (n,k, p,d) code for p = 1, 2, or 3 and d = 3 provides

joint crosstalk avoidance and single error correction. Sim-
ilar to (n,k,−,3) ECC, the largest codebook C (n, p,d) for
joint codes is not known. We can obtain C (n, p,d) by find-
ing the largest clique in a graph representing maximum cou-
pling and minimum distance conditions [17]. The graph has
all 2n codewords as nodes and edges between all pairs of
codewords that satisfy both conditions. The value of nmin
can be obtained by using (1). However, the problem of
finding the largest clique in a graph is NP-complete. Exces-
sive time and memory are required to compute C (n, p,d)
for large n.

For large n, we present the following bound on the value
of nmin [18].

Theorem 3. A (n,k, p,d) code has an nmin given by

nmin = n : 2k ≤




G(n)
2 p = 1, d = 3

F(n+2)
�n/2�+1 p = 2 (FT), d = 3
2F(n+1)

3 p = 2 (FP), d = 3
T (n+2)
�n/2�+2 p = 3, d = 3.

(12)

Code (LXC)

Linear
Crosstalk

Code (ECC)
Error Control

Code (CAC)
Avoidance
Crosstalk

mcm

lk

Figure 2. A code construction for joint
crosstalk avoidance and error correction.

Data words Codewords

0000 00000000
0001 00000001
0010 00000111
0011 00011100
0100 00011111
0101 01110000
0110 01110001
0111 01111100
1000 01111111
1001 11000000
1010 11000001
1011 11000111
1100 11110000
1101 11110001
1110 11111100
1111 11111111

(a)

OLC(8,4)

OLC(8,4)

Shield Wire

(b)

Figure 3. One lambda codes: (a) codewords
for OLC(8,4) and (b) partial coding for large
buses with duplication and shielding at the
boundaries of sub-channels.

5 Practical Codes

In this section, we first present practical (n,k,1,−) and
(n,k,3,−) CACs. In case of CAC, we cannot encode all k
bits at once for large buses. Therefore, we employ partial
coding to reduce the complexity of the CAC codec circuits.

Next, in order to implement a joint code, we employ a
code construction derived from the coding framework pro-
posed in [16]. The code construction is shown in Figure 2.
A k-bit input is first encoded using CAC. Then, ECC gener-
ates m parity bits for the l bits at the output of CAC. Here,
we assume that ECC is a systematic code. The parity bits
generated by ECC do not satisfy the constraint on coupling.
Therefore, we need to encode them using a CAC. However,
CAC for the parity bits must be a code that does not modify
the parity bits in any way as decoding of ECC has to occur
before any other decoding in the receiver. Therefore, a lin-
ear crosstalk code (LXC), which does not modify its inputs,
is employed to generate mc encoded parity bits. The LXC
employed is half-shielding for p = 3, shielding for p = 2
(FT), duplication for p = 2 (FP), and duplication and shield-
ing for p = 1.
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Data words Codewords
b3:0 a4:0

0000 00000
0001 00100
0010 00001
0011 00101
0100 00011
0101 00111
0110 10011
0111 10111
1000 10000
1001 10100
1010 10001
1011 10101
1100 11000
1101 11100
1110 11001
1111 11101

a4 = b1b2 + b3

a3 = b2b3

a2 = b0

a1 = b2b′3
a0 = b1 + b2b′3

b3 = a′1a4

b2 = a1 + a3

b1 = a0(a′1 + a4)
b0 = a2

Figure 4. Codewords and boolean expres-
sions for FOC(5,4).

5.1 One lambda codes
For k < 10, the highest code rate (k/nmin) of 50% is

achieved for k = 4. The data words and codewords cor-
responding to k = 4 are shown in Figure 3(a). We refer to
this code as OLC(8,4). Partial coding for large buses using
OLC(8,4) requires duplicating the boundary bits of the sub-
channel and inserting a shield wire between sub-channels as
shown in Figure 3(b).

To encode a k-bit bus using OLC(8,4), l = 11k/4− 3
wires are required, where k is assumed to be a multiple of
4. For example, 85 wires are required for k = 32 compared
to nmin = 78 given by (8).

5.2 Forbidden overlap codes
We cannot place two sub-channels encoded with FOC

next to each other without violating the FO condition at
the boundary. We need shield wires between sub-channels
to satisfy the FO condition, thereby increasing the number
of wires. But, a closer inspection reveals that if there are
no opposing transitions between the boundary bit and its
neighbor within a sub-channel, then two sub-channels can
be placed next to each other without any shielding. How-
ever, eliminating opposing transitions at the boundaries in-
creases nmin [18].

Theorem 4. A (n,k,3,−) code without opposing transi-
tions at the boundaries has an nmin given by

nmin = n : T (n + 2)−T(n) ≥ 2k for p = 3. (13)

For k < 10, the largest code rate (k/nmin) of 80% is
achieved for k = 4. Though a higher coding rate is pos-
sible for k > 10, we choose k = 4 as the codec complexity
grows exponentially with k. Larger buses are broken into
4-bit sub-buses and encoded into 5-bit sub-channels. We
refer to this code as FOC(5,4). The codewords and the cor-
responding boolean expressions for FOC(5,4) are shown in
Figure 4. Encoder and decoder are simple combinational

Optional shield wires

Parity

Duplication

Mux
2−to−1

Mux
2−to−1

Parity

DecoderEncoder

Mux
2−to−10

1

0

1

0

1
b0

bk−1

b0

bk−1

b1b1

Figure 5. Duplicate-(shield)-add-parity: A
joint code for FPC and OLC. Shield wires re-
quired for OLC.

circuits and complexity for large buses grows linearly with
bus width.

To encode a k-bit bus using FOC(5,4), l = 5k/4 wires
are required, where k is assumed to be a multiple of 4.
For example 40 wires are required for k = 32 compared to
nmin = 37 given by (10).

5.3 Joint codes
A practical joint code can be obtained by combining

any of the practical CACs with a Hamming code using
the construction in Figure 2. Table 1 lists coding schemes
FOC+HC, FTC+HC, and OLC+HC that combine a Ham-
ming code with FOC(5,4), FTC(4,3), and OLC(8,4) based
CACs, respectively. An appropriate LXC scheme is also
employed as listed in the table.

An alternative construction that does not employ Ham-
ming codes is possible for FPC and OLC based joint codes.
Consider the duplication scheme for satisfying the FP con-
dition. This code has a minimum distance of two as any
two distinct codewords differ in at least two bits. We can
increase the minimum distance to three by appending a sin-
gle parity bit. This code referred to as duplicate-add-parity
(DAP) is shown in Figure 5. DAP achieves (1+2λ)τ0 delay
and single error correction. We can also satisfy the FABP
condition and reduce the delay to (1+λ)τ0 by adding shield
wires to obtain duplicate-shield-add-parity (DSAP) code as
shown in Figure 5.

To decode, we recreate the parity bit by using one set of
the received data bits and compare that with received parity
bit. If the two match, the set of bits used to recreate the
parity bit is chosen as the output, else the other set is chosen
as shown in Figure 5. Since a single error will at most affect
one of the sets or the parity bit, it is correctable.

Table 1 also lists the number of wires required for a 32-
bit bus employing the practical code and compares it with
the fundamental limits. The number of wires required for
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Table 1. Practical joint codes and comparision with limits on minimum number of wires nmin.
Coding Maximum Minimum Components Number of wires for 32-bit bus
Scheme coupling p distance d CAC ECC LXC Practical code nmin

FOC+HC 3 3 FOC(5,4) Hamming Half-shielding 49 42
FTC+HC 2 (FT) 3 FTC(4,3) Hamming Shielding 65 53

DAP 2 (FP) 3 Duplication Parity – 65 48
OLC+HC 1 3 OLC(8,4) Hamming Duplication+Shielding 106 80

DSAP 1 3 Duplication+Sheilding Parity Shielding 97 80

the practical codes is within 35% of nmin. We see that DSAP
requires lower number of wires than OLC+HC. For a 32-bit
bus, DSAP requires 97 wires compared to 106 wires for
OLC+HC.

6 Simulation Results
We quantify the benefits of crosstalk avoidance and er-

ror correction by computing the reduction in delay and en-
ergy dissipation. The achieved improvements vary with
bus length L, ratio of coupling capacitance to bulk capac-
itance λ, bus width k, and the process technology. Here, we
present the improvements for 10-mm 32-bit in a standard
0.13-µm CMOS technology.

We assume that reducing the supply voltage Vdd will
cause errors with probability [13, 14]

ε = Q

(
Vdd

2σN

)
, (14)

where Q(·) is the Gaussian probability of error function and
σ2

N is variance of the additive Gaussian noise. For a k-bit
uncoded bus, the probability of word error is Punc(ε) = kε.
If the residual probability of word error with ECC is Pecc(ε),
then Pecc(ε) < Punc(ε). For a given reliability requirement,
we can reduce the supply voltage to

V̂dd = Vdd
Q−1 (ε̂)
Q−1 (ε)

(15)

such that Pecc(ε̂) = Punc(ε). Pecc for Hamming and DAP-
based codes are given by

Pham(ε) =
(

l + m
2

)
ε2, Pdap =

3k(k + 1)
2

ε2. (16)

respectively. In this paper, we assume a word-error rate re-
quirement of 10−20.

We consider a metal 4 bus with minimum width of 0.2
µm and minimum spacing of 0.2 µm. For a given bus geom-
etry, the value of λ depends on the metal coverage in upper
and lower metal layers [2]. We vary λ between the follow-
ing two extreme scenarios. First, 100% metal coverage is
assumed in metal layers 3 and 5, resulting in λ = 0.95. Sec-
ond, all of the bulk capacitance is assumed to be from metal
4 to the substrate, resulting in λ = 4.6.

We assume 50× minimum-sized drivers and obtain bus
delay and energy dissipation for various bus transitions us-
ing HSPICE. The average energy per bus transfer is com-
puted using the energy model in [9]. We assume that the

data is spatially and temporally uncorrelated and that 0 and
1 are equally likely to appear. In case of ECC, the bus en-
ergy is also computed at the reduced supply voltage V̂dd .
The codecs are synthesized using a 0.13-µm CMOS stan-
dard cell library and optimized for speed.

Figure 6(a) plots the speed-up over the uncoded bus as
a function of λ. Hamming code has a speed-up of less
than 1, indicating an effective slow-down due to codec de-
lay. Along with single error correction, joint codes offer
crosstalk avoidance and, hence, have significant speed-up.
FOC+HC reduces the bus delay to (1+3λ)τ0 and achieve a
speed-up of close to 1. Therefore, FOC+HC can be used as
a “zero-latency” error correction code, in the sense that the
reduction in bus delay completely masks coding latency for
global buses. DAP and DSAP reduce maximum coupling
to 2 and 1, respectively, and achieve speed-ups of 1.44 and
2.14, respectively, at λ = 2.8. Speed-up is an increasing
function of λ and, therefore, technology scaling leading to
reduced codec delay, and larger λ will improve the achieved
speed-up.

Along with speed-up, joint codes achieve energy savings
over uncoded bus as shown in Figure 6(b). Energy savings
over uncoded bus are achieved mainly due to the reduced
swing. Further, many of the joint codes also reduce the cou-
pling component of energy. Therefore, energy savings im-
prove with λ as shown in the figure. DAP and DSAP have
high energy savings as they achieve reduced swing with low
codec power overhead. DAP and DSAP provide 27.5% en-
ergy savings at λ = 2.8.

7 Conclusions

Bus coding for crosstalk avoidance and error correction
requires additional wires to satisfy the constraints on the
code. In this paper, we have derived fundamental limits on
the number of wires required for memoryless codes. We
have addressed the two challenges in approaching the fun-
damental limits viz. code construction and codec complex-
ity. Future work will be directed at finding code construc-
tions that approach the fundamental limit without substan-
tially increasing the codec complexity.

All joint codes trade-off delay and power dissipation in
the bus with delay and power dissipation in the codec. This
trade-off will be increasingly favorable in future technolo-
gies due to the increasing gap between gate delay and inter-
connect delay brought about by shrinking feature sizes and
due to the longer bus lengths brought about by bigger die
sizes. Therefore, the codes presented in this paper will re-
sult in greater reduction in energy dissipation and delay in
SOCs of the future.
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Figure 6. Improvements for 10-mm 32-bit bus as a function of λ: (a) speed-up and (b) energy savings.
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