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Analytical Estimation of Signal Transition
Activity from Word-Level Statistics
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Abstract—Presented in this paper is a novel methodology to
determine the average number of transitions in a signal from
its word-level statistical description. The proposed methodology
employs: 1) high-level signal statistics, 2) a statistical signal
generation model, and 3) the signal encoding (or number rep-
resentation) to estimate the transition activity for that signal. In
particular, the signal statistics employed are mean(�); variance
(�2); and autocorrelation (�): The signal generation models
considered are autoregressive moving-average (ARMA) models.
The signal encoding includes unsigned, one’s complement, two’s
complement, and sign-magnitude representations. First, the fol-
lowing exactrelation between the transition activity (ti); bit-level
probability (pi); and the bit-level autocorrelation (�i) for a single
bit signal bi is derived

ti = 2pi(1� pi)(1� �i): (1)

Next, two techniques are presented which employ the word-
level signal statistics, the signal generation model, and the signal
encoding to determine�i (i = 0; � � � ; B � 1) in (1) for a B-
bit signal. The word-level transition activity T is obtained as
a summation over ti (i = 0; � � � ; B � 1); where ti is obtained
from (1). Simulation results for 16-bit signals generated via
ARMA models indicate that an error in T of less than 2% can
be achieved. Employing AR(1) and MA(10) models for audio
and video signals, the proposed method results in errors of
less than 10%. Both analysis and simulations indicate the sign-
magnitude representation to have lower transition activity than
unsigned, ones’ complement, or two’s complement. Finally, the
proposed method is employed in estimation of transition activity
in digital signal processing (DSP) hardware. Signal statistics
are propagated through various DSP operators such as adders,
multipliers, multiplexers, and delays, and then the transition
activity T is calculated. Simulation results with ARMA inputs
show that errors less than 4% are achievable in the estimation
of the total transition activity in the filters. Furthermore, the
transpose form structure is shown to have fewer signal transitions
as compared to the direct form structure for the same input.

I. INTRODUCTION

POWER dissipation has become a critical design concern
in recent years driven by the emergence of mobile appli-

cations. Reliability concerns and packaging costs have made
power optimization relevant even for tethered applications.
As system designers strive to integrate multiple systems on-
chip, power dissipation has become an equally important
parameter that needs to be optimized along with area and
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speed. Therefore, extensive research into various aspects of
low-power system design is presently being conducted. We
may classify this research into: 1)power reductiontechniques
[6], [7], [9]; 2) low-power synthesistechniques [5], [11], [31];
3) power estimation[20]; and 4)fundamental limitson power
dissipation [30], [33]. While the work presented in this paper
focuses on 3), our eventual objective is to enable 2).

Power reduction techniques form an integral part of low-
power very large scale integration (VLSI) systems design and
is presently an active area of research [6], [7], [9]. These
techniques have been proposed at all levels of the design
hierarchy, beginning with algorithms and architectures and
ending with circuits and technological innovations. Existing
techniques include those at the algorithmic level (such as
reduced complexity algorithms [6]), architectural level (such
as pipelining [12], [25] and parallel processing), logic (logic
minimization [31] and precomputation [1]), circuit (reduced
voltage swing [21], adiabatic logic [3]), and technological level
[8]. It is now well recognized that an astute algorithmic and
architectural design can have a large impact on the final power
dissipation characteristics of the fabricated VLSI solution.
Therefore, there is a great need for techniques which allow
the evaluation of different architectures from the viewpoint of
power dissipation and to be able to accurately estimate their
power dissipation.

Power dissipation in CMOS VLSI circuits is a direct func-
tion of the number of signal transitions occurring at the
capacitive nodes present in it. The termsswitching activity,
transition probability[20], transition density[19], andtransi-
tion activity [10] have been proposed in the past to provide
a measure of the number of signal transitions. Switching
activity and transition probability indicate the average number
of transitions at a node per clock cycle. The term transition
density equals the average number of transitions per unit time.
Transition activity has been employed in [10] to indicate the
average number of transitions in a clock cycle present in a
bit of a signal word, in a word, and within a module. Here,
we will employ the terminology transition activity as in [10]
without any ambiguity.

At the logic and circuit levels, techniques such as [13]–[15],
[17], [19], [29], [32] exist for power estimation. While these
techniques provide accurate estimates of power dissipation,
they require a gate or transistor level description of the
circuit. Therefore, such techniques are applicable once the
design has reached a substantial degree of maturity. Our
interest in this paper is to enable power estimation at a
higher level, which in this case is the architectural level.
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In the present context, an architectural description refers
to the register-transfer level (RTL) model of the system.
Architectural level power estimation tools will allow the
system designer to choose between competing architectures,
and also permit major design changes when it is easiest to
do so.

While a large amount of work has been done at the circuit
and logic levels, not much work has been done for power
estimation at the architectural level. In [22], a technique based
upon the concept ofentropywas presented for estimating the
average transition density inside a combinational circuit. This
technique employs the Boolean relationship between its input
and output. The closest approach to our work, however, is the
dual bit type (DBT) model described in [10] where a word-
level signal is broken up into: 1) uncorrelated data bits, 2)
correlated data bits, and 3) sign bits. The uncorrelated data
bits are from the least significant bit (LSB) up to a certain
breakpoint with a fixed transition activity. The transition
activity of the sign bits, which are from the most significant bit
(MSB) to another breakpoint are measured by an RTL
simulation. A linear model is then employed for the switching
activity of correlated data bits, which lie between the sign bits
and uncorrelated data bits. Empirical equations defining
and in terms of word-level statistics such as mean
variance and autocorrelation were also presented.

Our approach considers the same problem as [10] in that
we present a methodology for estimating the average num-
ber of transitions in a signal from its word-level statistical
description. However, unlike [10] where the estimation of
transition activity is based on simulation, the proposed method-
ology is analytical requiring: 1) high-level signal statistics,
2) a statistical signal generation model, and 3) the signal
encoding (or number representation) to estimate the transition
activity for that signal. Therefore, the two novel features of
the proposed method are: 1) it is a completelyanalytical
approach, and 2) its computational complexity is independent
of the length (i.e., number of samples) of the signal. Both
of these features distinguish the proposed approach from most
existing techniques to estimate signal transition activity. While
[10] also estimates power dissipation by characterizing input
capacitance, we focus only on the estimation of transition
activity.

We first derive a new relation among the bit-level tran-
sition activity bit-level probability and the bit-
level autocorrelation for a single bit signal Then,
we present two methods, the first exact but computationally
expensive, and the second fast but approximate, to estimate
the word-level transition activity, employing word-level
signal statistics (namely, and signal generation
models (such as autoregressive (AR), moving-average (MA),
and autoregressive moving-average (ARMA) models), along
with a certain number representation (such as unsigned, sign-
magnitude, one’s complement, or two’s complement). In the
approximate method, we divide a word into three regions based
on the temporal correlations, unlike [10], where a word is
divided into three regions based on the transition activities.
Such an approach enables us to estimate the transition activity
analytically. The approximate method also uses different and

more accurate formulas for estimating the breakpoints
and Proceeding further, we describe the propagation of
the input statistics through commonly used digital signal pro-
cessing (DSP) blocks such as adders, multipliers, multiplexers,
and delays. The effect of thefolding transformation [26]
on signal statistics is also studied. The word-level transition
activities of all of the signals in a system composed of these
DSP blocks are determined. These are then summed up to
determine the total transition activity for the filter. Even though
we focus upon architectural level power estimation in this
paper, we believe that the work presented here would lead
to a formal procedure for the synthesis of low-power DSP
hardware. The transition activities estimated at the inputs and
outputs to blocks such as adders, multipliers, multiplexers, and
delays can be used to estimate power dissipation within the
block using a power macromodel [16].

The paper is organized as follows. In Section II, we present
some preliminaries and existing results. Determining word-
level transition activity from word-level signal properties is
described in Section III. In Section IV, we compute transition
activity for various filter structures, and in Section V, we
present simulation results for audio, video, and communication
system signals and filters.

II. PRELIMINARIES

In this section, we will present definitions and review
existing results that will be employed in later sections. First,
we will define theword-levelquantities such as the mean
variance and temporal correlation Next, we consider
bit-level quantities such as the probability of the th bit
being equal to a “1,” the bit-level temporal correlation and
the bit-level transition activity Finally, the structures of the
AR, MA, and ARMA models are described.

A. Word and Bit-Level Quantities

Let be a -bit word signal given by

(2)

where represents theth bit, are the weights,
and is the time index. For example, in case of unsigned
number representation, we have

For in (2), the mean or the average (or expected
value) of is defined as

(3)

where the elements of the set are the values that can
assume, and Pr is the probability that event occurs. Note
that the elements of the set are a function of the signal
encoding or the number representation.

Similarly, thevariance of is given by

(4)

The variance is also referred to as the signal power.
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The lag-i temporal correlation of is defined as

(5)

In this paper, we will be interested mainly in and
therefore we will denote it via the simplified notation

We now consider theth bit of a word-level signal
defined in (2). Let be the probability that is 1, i.e.,

If is the set of all elements
in such that the th bit is 1, then

(6)

assuming normal distribution (7)

Clearly, the value of is dependent on the statistical distribu-
tion of the values in While we have provided an example
of a normal distribution here, there is no restriction on the
distribution itself. Note that the probability distribution of
can either be estimated or obtained from the knowledge of the
parameters of the signal generation models to be discussed
in Section II-B. However, without loss of generality, we will
assume that the probability distribution of is known a
priori .

The temporal correlation of the th bit is defined as

(8)

If or then is defined to be 1.
The transition activity(or transition probability [20]) of

the th bit is defined as

and

and (9)

If the bits and are independent, then the
transition activity is given by [20]

(10)

In Section III, we will derive an equation relating the transition
activity and the correlation Finally, we define the word-
level transition activity, as follows:

(11)

In Section III, we will show how to compute and then
employ (11) to compute

B. Signal Generation Models

As mentioned in the previous section, we will employ
ARMA signal generation models to calculate transition activ-
ity. These signal models are commonly employed to represent
stationary signals in general, and have found widespread
application in speech [2] and video coding [18]. Furthermore,
signals obtained from sources such as speech, audio, and video
can also be modeled employing ARMA models.

An -order autoregressive moving average model
(ARMA( )) can be represented as

(12)

where the signal is a white (uncorrelated) noise source
with zero mean, and is the signal being generated. If a
given signal source, such as speech, needs to be modeled via
(12), then we can choose coefficientsand to minimize
a certain error measure (such as the mean-squared error)
between and the given source. In that case, we say
that represents the given signal source. As mentioned in
Section II-A, if the ’s and ’s in (12) are known, along with
the distribution of then we can obtain the probability
distribution of

The model in (12) is an infinite-impulse response (IIR) filter
with coefficients and with a zero-mean white noise as
the input. It is also possible to transform this IIR model into
one that depends only on the inputs as shown below

(13)

where can be computed according to the following recur-
sion:

(14)

where for and Finally, AR and
MA models are special cases of ARMA models. Anth
order auto-regressive (AR signal model is identical to
an ARMA model. Also, an th-order moving-average
(MA signal model is the same as an ARMA model.

In proving Theorem 1 in Section III, we will also employ
the following result from [14].

Lemma 1:

III. W ORD-LEVEL SIGNAL TRANSITION ACTIVITY

In this section, we will present techniques for estimating
word-level transition activity of a signal from its word-
level statistics. We will first present a theorem relating bit-level
quantities, namely, the transition activity the probability

and temporal correlation Next, two techniques for
estimating are presented. The first is referred to as theexact
method, whereby is explicitly determined for the bits

in The second method is called the
approximate methodin which breakpoints BP and BP (as
defined in [10]) are determined from an ARMA model of the
signal. Simulation results will be provided in support of the
theory.
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A. Transition Activity for Single-Bit Signals

For single-bit signals, we have an expression given by (10)
[20] for independent bits and In this subsection,
we will present a more general result which is also applicable
when the temporal correlation between and
(i.e., is not zero. This result is presented as Theorem 1
as follows.

Theorem 1: If an th bit has a probability of being
a 1 and has a temporal correlation of then its transition
activity is given by

(15)

Proof: From the definition of in (8), we have

(16)

Substituting for from Lemma 1 into (16)
and solving for we get

(17)

which is the desired result.
Note that substitution of (corresponding to the case

of uncorrelated bits) in (15) reduces it to (10). In subsequent
sections, we present two methods (the exact and approximate
methods) for calculating from word-level statistics. These
will then be substituted in (15) to obtain

B. Estimation of : The Exact Method

From (8), we see that it is necessary to computeand
in order to estimate As can be obtained

from the probability distribution function of we will now
focus upon which is given by (recall that

is the set of all elements in such that theth bit is a “1”)

and

and

(18)

In particular, we will employ AR(1) and MA signal
models to estimate First, we present the
following result for an AR(1) model.

Theorem 2: For an AR(1) signal

(19)

Proof: From the definition of in (18),
we have

and

(20)

Substituting the expression for an AR(1) model [obtained by
substituting and in (12)] into (20),

we obtain

and

(21)

where the last step is justified because and
are independent. Note that (19) can now be obtained by a
simple rewriting of (21). Furthermore, each of the summations
in (19) can be evaluated via the knowledge of the probability
distribution function.

In order to confirm Theorem 2, we compared the measured
values of and for the data generated by an AR(1) signal
SIG2 in Table I, with the estimated values predicted by the
theorem. The results shown in Fig. 1 indicate that measured
and theoretical values match very well. For the word-level
transition activity a total error of less than 1% was obtained.
Similar results were obtained for the other signals in Table I.
The signals in Table I were chosen because they represent a
wide variety of signals. The signals SIG1 and SIG2 are based
on an AR(1) model with positive and negative correlations,
respectively, whereas the signal SIG2 has an AR(1) model with
positive correlation. Similarly, the signal SIG3 is based on an
MA(1) model, and the signal SIG4 is identical to SIG2 except
for the mean. The signal SIG5 is derived from an ARMA(3,5)
model.

We now consider an MA(1) process and present the follow-
ing result.

Theorem 3: Let where and
Then, for an MA(1) signal

(22)

Proof: Employing the expression for an MA(1) signal
obtained by substituting and into (12), we get

and

and

and

(23)
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TABLE I
SIGNAL DETAILS

Fig. 1. Measured and theoreticalti and �i versus bit for the AR(1) signal SIG2.

If and then we can
write (23) as follows:

and and

(24)

where and which is the desired
result.

In Fig. 2, we show the simulation results in support of
Theorem 3. Again, we compared the measured values for
and in data generated by the MA(1) signal SIG3 in Table I
with the values predicted by the theorem. In this case, we
found that the errors between the measured and predicted
values of were less than 2%.

Finally, we consider the computation of
for an MA(2) signal, and show that Theorem 3 can also be
extended to calculate for an MA signal.
For an MA(2) signal

the quantity is given by

where and
It can be checked that for AR and
ARMA signals is difficult to calculate for
because we need to compute the joint probability distribution
function of and However, we can estimate

for an AR or an ARMA signal
by approximating the signal with an MA signal, where
is sufficiently large, or approximating with an AR(1) signal.

C. Estimation of : The Approximate Method

In the previous subsection, an exact method for computing
was presented. For large values ofthis

computation can become expensive. In order to alleviate this
problem, we will present a computationally efficient method to
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Fig. 2. Measured and theoreticalti and �i versus bit for the MA(1) signal SIG3.

Fig. 3. Temporal correlation versus bit.

estimate from word-level statistics. As mentioned before,
this method (referred to as theapproximate method) uses a
model similar to that described in [10].

In Fig. 3, we plot the temporal correlation versus bit po-
sition for various audio, video, and communications channel
streams described in Table X. It can be seen that the temporal
correlation is approximately zero for the LSB’s and close
to the word-level temporal correlation for the MSB’s.
Furthermore, there is a region in between the LSB’s and
MSB’s where the bit-level temporal correlation increases

approximately linearly. As proposed in [10], we divide the bits
in the signal word into three regions of contiguous bits referred
to as the LSB,linear, and MSB regions. The breakpoints
and separate the LSB from the linear region and the
linear from the MSB region, respectively. Furthermore, the
graph of temporal correlation versus bit position for the
LSB, linear, and MSB regions has slopes of zero, nonzero,
and zero, respectively.

In spite of this similarity with [10], the proposed approach
differs from [10] in the following ways: 1) the word is
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Fig. 4. Temporal correlation versus bit.

TABLE II
MEASURED AND ESTIMATED BP0 AND BP1

divided into three regions based upon the correlation and not
the transition activity, 2) the way the breakpoints and

are computed, and 3) our use of (15) to compute
and (11) to compute analytically. In particular, we do not
employ simulations to estimate transition activity of the most
significant bits.

Without loss of generality, we will assume that two’s
complement representation is employed. By definition,
for Now, let for

Hence, we can make the following approximation for two’s
complement representation:

(25)
We now examine the relation between the parameters in the

set and those in in order to derive
expressions for and

1) Calculation of : For an uncorrelated signal
a good estimate of is given by where is
the standard deviation of [10]. If the signal has
nonzero correlation, then it can be modeled using a signal
model, which can then be used to calculate For instance,

if is modeled using an ARMA model, then it can
be expressed using (13). Since the signals are
uncorrelated, for each of the signals can be estimated as

Given an adder which accepts two input signals
with breakpoints, and respectively, a good
estimate for the breakpoint at the output of the adder is

Hence, the breakpoint for a signal
can now be estimated as the maximum

of the ’s of the signals as shown below

(26)

where and is the integer nearest to
We verified (26) by comparing the measured and estimated
values of obtained from data generated with the five
signals shown in Table I. The measured value of was
obtained by counting the number of bits with correlation close
to 0. For instance, from Fig. 4, we see that for the signal
SIG2 is 8 because there are 8 bits with correlation close to
0. The measured and estimated values of are shown in
Table II, where it can be seen that the measured and estimated
values match quite well.

2) Calculation of BP: Let the values of lie between
the values and In a normal distribution,

and We define such that
for is approximately constant. Since the
dynamic range of is the least significant

bits are required to cover this range. Hence,
we have

which reduces to

(27)
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Fig. 5. Temporal correlation and transition activity for SIG2 and SIG4.

TABLE III
WORD-LEVEL TRANSITION ACTIVITY FOR DIFFERENT NUMBER REPRESENTATIONS

for a normal distribution where is the standard deviation of
The estimate for in (27) is different from that in

[10], which is given in (28) below for comparison purposes:

(28)

When both (27) and (28) are approximately equal
with the maximum difference of 1 occurring at
However, in the case where (27) is more accurate
than (28). This is due to the fact that for there are
three regions in which is a constant. The first region consists
of the bit positions such that The second region
has bit positions lying between and another breakpoint

The third region consists of bits with positions beyond
where the bits do not have any transitions. The bits in the

third region can be calculated by computing the common most
significant bits in the binary representations of the numbers

and These are the numbers which lie at the two
extremes of the probability distribution.

We verified (27) by comparing it with the measured values
of obtained from data generated by various signals in
Table I. The results are shown in Table II, where it can be
seen that the measured and estimated values match closely.
To verify that is independent of the mean we plot the
bit-level temporal correlation and transition activity for

signals SIG2 and SIG4 in Fig. 5. Note that from Table I, SIG2
and SIG4 are identical except for their meanIt can be seen
from Fig. 5 that the value of 13, for SIG2 and SIG4 is
independent of which is also indicated by (27). For SIG4,

is 15 because the binary representations of 19 384,
and 13 384, have only one common most significant bit.

All that now remains in the approximate method is to
estimate the value for If the model for is known,
then we can use the exact method to calculate If the
model for is not available, then we assume that
which is the word-level temporal correlation. This is because,
in most number representations like sign magnitude, two’s
complement, and one’s complement, the most significant bits
have higher weight than the least significant bits. Hence, the
correlation of the most significant bits will be close to the
word-level correlation. This is especially valid for audio and
video signals (see Fig. 3).

D. Calculation of

Employing (11), (15), (26), (27), we computed the value of
the word-level transition activity for the signals described
in Table I for two’s complement representation. The measured
and estimated word-level transition activity for all of the
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signals are shown in Table III. It can be noted that the error
is less than 2% for two’s complement representation.

E. Effect of Signal Encoding/Number Representation

The results presented so far in this section (Theorems 2 and
3) have implicitly included the effect of the signal encoding.
This is due to the fact that the elements of the setsand
will depend upon the signal encoding. In this subsection, we
examine explicitly the effect of number representation on the
transition activity.

In the previous subsections, we have considered two’s com-
plement number representation. The unsigned representation
will have the same transition activity as two’s complement be-
cause the most significant bits of the former behave identically
to the sign bits of the latter. Therefore, we will not consider
the unsigned representation any further. We will now analyze
the one’s complement and sign-magnitude representations.

1) One’s Complement:The one’s complement representa-
tion is identical to the two’s complement for positive numbers.
For negative numbers, we can generate the two’s comple-
ment representation from that of the one’s complement by
adding a “1” to the LSB, which will usually affect only the
LSB’s. In the approximate method, since we assume that
LSB’s are uncorrelated, the activity of the LSB’s in the one’s
complement will be close to that of the two’s complement.
The remaining bits will have the same temporal correlation
as in the two’s complement representation. Therefore,for
one’s complement representation will be the same as that for
two’s complement representation. The measured and estimated
word-level transition activity for the signals in Table I
employing one’s complement is shown in the second set of the
three columns in Table III. The measured word-level transition
activity was obtained by generating data using the signal model
and measuring transition activity in that data. The error in
is less than 2% for one’s complement representation.

2) Sign Magnitude:In the sign magnitude representation,
there is only one sign bit, namely, the most significant bit

This bit will have the same temporal correlation
as the sign bits in two’s complement representation because
the temporal correlation of the sign bit depends on the sign
transitions. The bits for are uncorrelated as in
the case of two’s complement. We again assume a linear model
for for The resulting expression for

is as follows:

(29)
The measured and estimated word-level transition activity
for the signals are shown in the last three columns of Table

III. As always, the measured word-level transition activity
was obtained by generating data using the signal model and
measuring transition activity in that data. It can be seen that

Fig. 6. Adder, multiplier, multiplexer, and delay.

the error in is less than 2% for all the signals except for
SIG4, where the error is less than 5%.

3) Discussion: From the expressions for in (25) and
(29), we see that the temporal correlation, and hence the
transition activity for unsigned, one’s complement, and two’s
complement representations are nearly equal. Also, the transi-
tion activity for sign magnitude is less than or equal to two’s
complement because the number of sign bits in sign magnitude
representation (one) is less than or equal to the number of sign
bits in two’s complement representation. These conclusions
are supported via the results in Table III, which show that the
transition activities for unsigned, one’s complement, and two’s
complement are similar, while the transition activity for sign
magnitude is less than that of unsigned, one’s complement,
and two’s complement.

IV. TRANSITION ACTIVITY FOR DSP ARCHITECTURES

In the previous section, we presented techniques for esti-
mating the word-level transition activity for signals. In this
section, we will apply these techniques to compute the tran-
sition activity for DSP architectures. First, we propagate the
statistics of the input signal through a given DSP architecture
so that word-level statistics for each signal in the architecture
are obtained. Then, we calculate the transition activity for
each signal employing the techniques presented in the previous
section. These are then added up to obtain the total transition
activity of the architecture.

A. Propagation of Word-Level Statistics

In this subsection, we propagate the input statistics to the
output for the following DSP operators:

1) adder;
2) multiplier;
3) multiplexer;
4) delay.

These operators were chosen due to their widespread use in
DSP algorithms. First, we start with the adder.

1) Adder: In Fig. 6, the two signals at the
input to the adder have statistics The mean

variance and temporal correlation at the output of
the adder are given by (30)–(32) shown at the bottom of the
next page.

If and as
in the case of an FIR filter, we have (33)–(35), shown at the
bottom of the next page.

2) Multiplier: In this subsection we examine how to prop-
agate word-level statistics through a multiplier. In Fig. 6, the
two signals and at the input to the multiplier have
statistics and respectively. The statistics
at the output of the multiplier are given by the following
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equations:

If is a constant then and

3) Multiplexer: When two signals and with
statistics and respectively, are mul-
tiplexed (Fig. 6) by a control signal with probability and
correlation then the statistics of at the
output of the multiplexer are given by (assuming 0 and 1 on
the control signal selects and respectively)

(36)

(37)

(38)

Fig. 7. Direct form FIR filter.

where is given by

where the expectations in the above formula can be obtained
from the autocorrelation and cross-correlation values of the
input signals. Also, for is the maximum of
for and

4) Delay: A delay shifts the signal by one time unit, which
in this case is a clock period. The statistics at the output of a
delay element are identical to that at the input.

B. Example 1: FIR filter

We illustrate propagating word-level statistics using the
five-tap finite impulse response (FIR) filter in Fig. 7, where
coefficients
and The correlations and
require the lag-2, lag-3, lag-4, and lag-5 correlations of the
input to be known. If they are not available, then for most

(30)

(31)

(32)

(33)

(34)

(35)
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TABLE IV
WORD-LEVEL STATISTICS FOR DIRECT FORM FIR FILTER

TABLE V
TOTAL TRANSITION ACTIVITY FOR FIR FILTERS

Fig. 8. Transpose FIR filter.

real-life signals, the lag-correlation can be approximated by
Such an approximation corresponds to approximating

the signal with an AR(1) model. The statistics of signals within
the filter can be calculated using (33)–(35). As an example, the
equations for the mean, variance, and temporal correlation of
the output, are given in (39)–(41) shown at the bottom
of the page.

The measured and estimated word-level statistics for video3
data are shown in Table IV. We see that the estimated statistics
match the measured statistics very closely, with errors of less
than 1%. Table V shows the measured and estimated total
word-level transition activity for the FIR filter (when the
signals from Table I are passed through the filter) in Fig. 7 and
its transpose in Fig. 8. The measured values were obtained by

simulation using a C program. It can be seen that the total
transition activity for the transpose form is always less than
that for the direct form because of the lower transition activity
at the inputs to the delays. The lower transition activity at
the inputs to the delays is because multiplying by a constant
of magnitude less than 1 reduces the variance, and hence the
transition activity.

C. Example 2: Folded FIR Filter

Folding [26] is an algorithm transformation technique that
allows the mapping of algorithmic operations to a given set of
hardware units. For instance, the five-tap FIR filter in Fig. 7
containing five multiplies and four adds can be folded onto
three multipliers and two adders using additional delays and
multiplexers as shown in Fig. 9.

The statistics of the signals of the unfolded filter can
be calculated using (33)–(35). These are used along with
(36)–(38) to calculate the statistics of signals of the folded
filter. As an example, the statistics of the signal
obtained by multiplexing and are given by
(42)–(44) shown at the bottom of the next page.

The measured and estimated word-level statistics are shown
in Table VI. The measured and estimated word-level statistics
match very closely, with errors of less than 1%. Table VII

(39)

(40)

(41)
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Fig. 9. Folded direct form filter.

TABLE VI
WORD-LEVEL STATISTICS FOR FOLDED DIRECT FORM FIR FILTER

TABLE VII
TOTAL TRANSITION ACTIVITY FOR FOLDED DIRECT FORM FIR FILTER

shows the measured and estimated total word-level transition
activity for the folded FIR filter in Fig. 9. The error between
the measured and estimated transition activity for the five
signals is less than 4%. A comparison between the transition
activities of the original FIR filter (see Table V) and the folded
architecture (see Table VII) indicates that folding increases the
number of transitions. This conclusion is consistent with that
observed in [6].

Fig. 10. IIR direct form filter and transpose.

D. Example 3: IIR Filter

In this example, we propagate word-level statistics through
the simple infinite impulse response (IIR) filter in Fig. 10,
where

The equations for the statistics of the signals in the direct
form IIR filter are given by (45)–(49) shown at the bottom of
the next page.

The measured and estimated statistics are shown in Table
VIII. The error between the measured and estimated statistics

(42)

(43)

(44)
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TABLE VIII
WORD-LEVEL STATISTICS FOR DIRECT FORM IIR FILTER

TABLE IX
TOTAL TRANSITION ACTIVITY FOR IIR FILTERS

is less than 1%. Table IX shows the measured and estimated
total word-level transition activity for the direct form IIR filter
and its transpose in Fig. 10. We see that the total transition
activity is always less for the transpose form due to the
lower transition activity at the input to the latch because
multiplication by a constant of magnitude less than 1 reduces
the variance, which in turn reduces the transition activity.

V. RESULTS WITH REALISTIC BENCHMARK SIGNALS

We have so far presented results using the stationary,
synthetic signals in Table I. In this section, we will present sim-
ulation results for the nonstationary, naturally occurring, audio,
video, and communications channel signals described in Table
X. First, we apply the approximate method (see Section III-C)

(45)

assuming (46)

assuming (47)

assuming

(48)

(49)
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TABLE X
DESCRIPTION OF DATA-SETS

TABLE XI
MEASURED AND ESTIMATED BP0 AND BP1

TABLE XII
WORD-LEVEL TRANSITION ACTIVITY

TABLE XIII
TOTAL TRANSITION ACTIVITY FOR FIR FILTERS

to compare the measured and estimated transition activity for
these signals. Then, we process these signals through the direct
form FIR (Fig. 7) and IIR (Fig. 10), transpose FIR (Fig. 8) and
IIR (Fig. 10), and the folded direct form FIR (Fig. 9) filters to
compute the total transition activity in these structures.

A. Realistic Benchmark Signals

For the audio, video, and communications channel data
described in Table X, the approximate method was employed
to estimate transition activity. The results are shown in Table
XII, where the measured transition activity was calculated
directly from the data. We assumed which is the
word-level temporal correlation. To estimate we assumed
AR(1) models for all data sets except Audio5 and Video3.
We used MA(10) models for Video3 and Audio5 because

the AR(1) models resulted in higher errors.The measured and
estimated value of is shown in Table XI. The difference in
the measured and estimated value of for signals Audio5,
Audio6, and Audio7 is due to the fact that the least significant
bits of these signals are correlated, as can be seen from Fig. 3.

From Table XII, we see that for unsigned, two’s comple-
ment, and one’s complement representations, the estimation
error in is less than 10%. For sign-magnitude representation,
the error in is less than 18%.

B. Total Word-Level Transition Activity
for FIR and IIR Filters

In this subsection, we present the measured and estimated
transition activity with audio, video, and communications
channel data for the direct form filter in Fig. 7 and its transpose
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TABLE XIV
TOTAL TRANSITION ACTIVITY FOR FOLDED DIRECT FORM FIR FILTER

TABLE XV
TOTAL TRANSITION ACTIVITY FOR IIR FILTERS

TABLE XVI
RUN TIMES IN SECONDS FOR DIRECT FORM FILTER

in Fig. 8 (see Table XIII), the folded direct form filter in Fig. 9
(see Table XIV), and the IIR filter and its transpose in Fig. 10
(see Table XV). The errors in for all the filters are less
than 12%. Table XVI compares the run time for simulation
and the run time for the approximate method on an 85 MHz
SparcStation 5. We see that in most cases, the run time for
the approximate method is an order of magnitude less than
that for simulation. The run time for simulation depends on
the length of the input sequence, whereas the run time for
the approximate method depends on the width of the signals
(8 bits for video3 and 16 bits for the rest). This is because,
in our method, the computational complexity is determined
by the calculation of using (6) where the summation is
over elements where is the bit width. We can make the
computation time of essentially independent of bit width
by calculating the sum over points in spaced a certain
distance apart with basically no loss of accuracy
of the sum. The running times using the fast approximate
method and the dual bit type (DBT) method are also shown in
Table XVI. The run times for the approximate method can be
further reduced by introducing optimizations such as setting
the transition activity at the output of a delay to be equal to
that at its input, etc.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel methodology to estimate the
signal transition activity from the knowledge of the word-

level statistics [viz. the mean variance and temporal
correlation the signal generation model (AR, MA, and
ARMA), and the number representation. Two techniques were
presented to estimate the transition activity of the bits com-
prising the signal word for stationary signals only. However,
a possible generalization is to adaptively compute the signal
statistics and obtain a more accurate estimate of the signal
transition activity. We studied common filter examples to
demonstrate the propagation of the word-level statistics of the
input to determine the total transition activity in the filter. The
methodology presented here provides a basis for high-level
power estimation and optimization, whereby the information
regarding the signal characteristics along with the topology
of the DSP data-flow graph can be exploited. While the
present work has focused upon the problem of high-level
power estimation, our current effort is being directed toward
automated high-level synthesis of low-power DSP hardware.
Incorporation of circuit-level parameters into the proposed
methodology is also planned for the future.
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