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Analytical Estimation of Signal Transition
Activity from Word-Level Statistics
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Abstract—Presented in this paper is a novel methodology to speed. Therefore, extensive research into various aspects of
determine the average number of transitions in a signal from |O\N-power System design is presenﬂy being conducted. We
its word-level statistical description. The proposed methodology 1,4y ¢lassify this research into: ppwer reductiortechniques
employs: 1) high-level signal statistics, 2) a statistical signal 61 171 191 2) | hesitechni 51 [11]. [31]
generation model, and 3) the signal encoding (or number rep- (61, [71, [9F; .) OV_"'power synthesitec n'quesl[ _]' [11], [31];
resentation) to estimate the transition activity for that signal. In  3) power estimatiorj20]; and 4)fundamental limiton power
particular, the signal statistics employed are mear(;:), variance  dissipation [30], [33]. While the work presented in this paper
(¢?), and autocorrelation (p). The signal generation models focuses on 3), our eventual objective is to enable 2).
considered are autoregressive moving-average (ARMA) models. Power reduction techniques form an integral part of low-

The signal encoding includes unsigned, one’s complement, two’s . . .
complement, and sign-magnitude representations. First, the fol- POWer Very large scale integration (VLSI) systems design and

lowing exactrelation between the transition activity (#;), bit-level IS presently an active area of research [6], [7], [9]. These
probability (p;), and the bit-level autocorrelation (p;) for a single techniques have been proposed at all levels of the design
bit signal b; is derived hierarchy, beginning with algorithms and architectures and
ti=2pi(1 = p)(1 = pi). (1) ending with circuits and technological innovations. Existing
) ) techniques include those at the algorithmic level (such as
lNeXt' two_techniques are presented which employ the word- \oq,ced complexity algorithms [6]), architectural level (such
evel signal statistics, the signal generation model, and the signal o . . :
encoding to determinep; (i = 0,---,B — 1) in (1) for a B- @s pipelining [12], [25] and parallel processing), logic (logic
bit signal. The word-level transition activity T is obtained as Mminimization [31] and precomputation [1]), circuit (reduced
a summation overt; (i = 0,---,B — 1), where ¢; is obtained voltage swing [21], adiabatic logic [3]), and technological level
Z(I)?T/IAED' girpu_laéi_on re?qu'ts for 16-bit TSig??'S gi”erazt;‘d via [g]. It is now well recognized that an astute algorithmic and
be achirg\?e; séﬂq;ﬁ?ﬁ]é ?R?Q)e;rr?(; IIT/l A(1%) ?nsgdtelinfor °a33ir:) a_rch.|tec.tural design can have a large |mpact on the final power
and video signals, the proposed method results in errors of dissipation characteristics of the fabricated VLSI solution.
less than 10%. Both analysis and simulations indicate the sign- Therefore, there is a great need for techniques which allow
magnitude representation to have lower transition activity than the evaluation of different architectures from the viewpoint of

unsigned, ones’ complement, or two’s complement. Finally, the hoyer dissipation and to be able to accurately estimate their
proposed method is employed in estimation of transition activity power dissipation

in digital signal processing (DSP) hardware. Signal statistics DREER . .
are propagated through various DSP operators such as adders, Power dissipation in CMOS VLSI circuits is a direct func-
multipliers, multiplexers, and delays, and then the transition tion of the number of signal transitions occurring at the
activity T is calculated. Simulation results with ARMA inputs capacitive nodes present in it. The tersgitching activity,
show that errors less than 4% are achievable in the estimation transition probability[20], transition density[19], andtransi-

of the total transition activity in the filters. Furthermore, the i tivity 1101 h b d in th Pt id
transpose form structure is shown to have fewer signal transitions 10N activity [10] have been proposed in the past to provide

as compared to the direct form structure for the same input. a measure of the number of signal transitions. Switching
activity and transition probability indicate the average number
I. INTRODUCTION of transitions at a node per clock cycle. The term transition

verage number of transitions in a clock cycle present in a

cations. Reliability concerns and packaging costs have ma}ggof a signal word, in a word, and within a module. Here,

2ower toptlrglza_tlon reletyantt e\_/etn fort tethelz_eoll appl;catmn\ﬁle will employ the terminology transition activity as in [10]
s system designers strive to integrate multiple systems Qs .+ any ambiguity.

chip, power dissipation has become an equally important t the logic and circuit levels, techniques such as [13]-[15],

parameter that needs to be optimized along with area aﬁ 1, [19], [29], [32] exist for power estimation. While these
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In the present context, an architectural description refemore accurate formulas for estimating the breakpoidig,
to the register-transfer level (RTL) model of the systenand BP;. Proceeding further, we describe the propagation of
Architectural level power estimation tools will allow thethe input statistics through commonly used digital signal pro-
system designer to choose between competing architectusessing (DSP) blocks such as adders, multipliers, multiplexers,
and also permit major design changes when it is easiestatod delays. The effect of théolding transformation [26]
do so. on signal statistics is also studied. The word-level transition
While a large amount of work has been done at the circuttivities of all of the signals in a system composed of these
and logic levels, not much work has been done for pow&SP blocks are determined. These are then summed up to
estimation at the architectural level. In [22], a technique basddtermine the total transition activity for the filter. Even though
upon the concept ofntropywas presented for estimating thewe focus upon architectural level power estimation in this
average transition density inside a combinational circuit. Thi@per, we believe that the work presented here would lead
technique employs the Boolean relationship between its ingata formal procedure for the synthesis of low-power DSP
and output. The closest approach to our work, however, is therdware. The transition activities estimated at the inputs and
dual bit type (DBT) model described in [10] where a wordeutputs to blocks such as adders, multipliers, multiplexers, and
level signal is broken up into: 1) uncorrelated data bits, 2)elays can be used to estimate power dissipation within the
correlated data bits, and 3) sign bits. The uncorrelated délack using a power macromodel [16].
bits are from the least significant bit (LSB) up to a certain The paper is organized as follows. In Section Il, we present
breakpointBF,, with a fixed transition activity. The transition some preliminaries and existing results. Determining word-
activity of the sign bits, which are from the most significant bilevel transition activityl’ from word-level signal properties is
(MSB) to another breakpoinBP,, are measured by an RTL described in Section lIl. In Section IV, we compute transition
simulation. A linear model is then employed for the switchingctivity for various filter structures, and in Section V, we
activity of correlated data bits, which lie between the sign bigesent simulation results for audio, video, and communication
and uncorrelated data bits. Empirical equations defidiig system signals and filters.
and BP; in terms of word-level statistics such as megas,
variance(c?), and autocorrelatiolip) were also presented. II. PRELIMINARIES
Our approach considers the same problem as [10] in thaﬁn this section, we will present definitions and review
we present a methodology for estimating the average num ' P

ber of transitions in a signal from its word-level statistica?XIStIng results that will be employed in later sections. First,

description. However, unlike [10] where the estimation ovae.w'” def|2ne theword-levelquantities such as the meé@),
\é’:}nance(a ), and temporal correlatiofp). Next, we consider

transition activity is based on simulation, the proposed methqblt-level quantities such as the probabilipy of the ith bit b;

ology is analytical requiring: 1) high-level signal statistics, . o . .
2) a statistical signal generation model, and 3) the sigrs}b?mg equal to a 1," the bit-level temporal correlatiop and

. . . "Ae bit-level transition activity;. Finally, the structures of the

encoding (or number representation) to estimate the transmgﬂ MA. and ARMA models are described
activity for that signal. Therefore, the two novel features of ' '
the proposed method are: 1) it is a completalyalytical i .
approach, and 2) its computational complexity is indyepende%t Word and Bit-Level Quantities
of the length (i.e., number of samples) of the signal. Both Let x(n) be aB-bit word signal given by
of these features distinguish the proposed approach from most B_1
existing techniques to estimate signal transition activity. While _ .
[10] also estimates power dissipation by characterizing input #(n) = Z cibi(n) @
capacitance, we focus only on the estimation of transition
activity. whereb;(n) € {0,1} represents théh bit, ¢; are the weights,

We first derive a new relation among the bit-level tran@nd n is the time index. For example, in case of unsigned
sition activity (t;), bit-level probability (p;), and the bit- number representation, we have= 2'.
level autocorrelation(p;) for a single bit signalb;. Then,  For z(n) in (2), themeany or the average (or expected
we present two methods, the first exact but computationailue) of z(n) is defined as
expensive, and the second fast but approximate, to estimate
the word-level transition activityZ’, employing word-level p=EBlz(n)] = Z k Pr(z(n) = k) (3)
signal statistics (namelyy, o, and p), signal generation vkex
models (such as autoregressive (AR), moving-average (MAghere the elements of the s&tare the values that(n) can
and autoregressive moving-average (ARMA) models), aloagsume, and PA) is the probability that event occurs. Note
with a certain number representation (such as unsigned, sigiat the elements of the sét are a function of the signal
magnitude, one’s complement, or two’s complement). In thehcoding or the number representation.
approximate method, we divide a word into three regions basedimilarly, the variances? of z(n) is given by
on the temporal correlations, unlike [10], where a word is
divided into three regions based on the transition activities. o? = E[(a:(n) - N)Q} = E[a:Q(n)} — 2. 4)
Such an approach enables us to estimate the transition activity
analytically. The approximate method also uses different afitie variances? is also referred to as the signal power.

=0
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The lag-i temporal correlationp(¢) of x(n) is defined as  B. Signal Generation Models
As mentioned in the previous section, we will employ

p(i) = Ef(z(n) — p)(a(n _;) i) ARMA signal generation models to calculate transition activ-
El(a(n) = 1)?] ity. These signal models are commonly employed to represent
_ Elz(n)z(n —1i)] - 1 5) stationary signals in general, and have found widespread

N o? ' application in speech [2] and video coding [18]. Furthermore,

] . ) ] . signals obtained from sources such as speech, audio, and video
In this paper, we will be interested mainly in(1), and :an also be modeled employing ARMA models.

We now consider théth bit b; of a word-level signak(n) (ARMA(N, M)) can be represented as

defined in (2). Letp; be the probability thab;(n) is 1, i.e.,

N M
pi = Pr(b;(n) = 1) = E[bi(n)]. If &; is the set of all elements =N div(n — ) + () — 12
in A such that theith bit is 1, then =) z_% “¥n=4) ;W(n 8 a2

where the signaly(n) is a white (uncorrelated) noise source

pi =Pr(z(n) € X)) (6)  with zero mean, and(n) is the signal being generated. If a
— Z ;6—(1'—@2/202 given signal source, such as speech, needs to be modeled via
viex; OV 2w (12), then we can choose coefficientsand d; to minimize

@) a certain error measure (such as the mean-squared error)
betweenz(n) and the given source. In that case, we say

Clearly, the value of; is dependent on the statistical distriputhatz(n) represents the given signal source. As mentioned in

tion of the values inY'. While we have provided an exampleSeCtlon I-A, if thea;’s andd,’s in (12) are known, along with

of a normal distribution here, there is no restriction on thia® fj|str_|but|on ofy(n), then we can obtain the probability
istribution of z(n).

distribution itself. Note that the probability distribution ofn) ) . P ,
can either be estimated or obtained from the knowledge of theThe model in (12) is an infinite-impulse response (IR} filter

parameters of the signal generation models to be discus%é@.coemu?ntsai and di.’ with a Zero-mean white noise as
in Section II-B. However, without loss of generality, we will e input. It is also possible toltransform this IIR model into
assume that the probability distribution of») is known a one that depends only on the inputs as shown below

priori. R ol
The temporal correlationp; of the ith bit is defined as w(n) = ; hiy(n = i) (13)

(assuming normal distribution

whereh; can be computed according to the following recur-
s Bl = pi)(bio = 1) = o) whe P : .
B[ (n) = piY] N
Di —P; =
If p, =1 orp; =0, thenp; is defined to be 1. where by, = 0 for k<0, and hg = dp. Finally, AR and
The transition activity (or transition probability [20]}; of MA models are special cases of ARMA models. Adth
the 4th bit is defined as order auto-regressive (AR{)) signal model is identical to
an ARMA(0, M) model. Also, anNth-order moving-average
t; =Pr(b;(n) = 0 andb;(n — 1) = 1) (MA(N)) signal model is the same as an ARNIK, 0) model.
+ Pr(b;(n) = 1 andb;(n — 1) = 0). (9) In proving Theorem 1 in Section Ill, we will also employ

the following result from [14].
If the bits b;(n) and b;(n — 1) are independent, then the -€MMa L Efbi(n)bi(n — DI = pi = (£:/2).
transition activity is given by [20] lIl. WORD-LEVEL SIGNAL TRANSITION ACTIVITY

ti = 2pi(1 — po). (10) In this section, we will present techniques for estimating
‘ ‘ ‘ word-level transition activityl” of a signakz:(n) from its word-

In Section I, we will derive an equation relating the transitioIjlevel statistics. We will first present a theorem relating bit-level

activity ¢; and the correlatiop;. Finally, we define the word- quantities, namely, the transition activity, the probability
level trarz1$ition activity.T, as Zf'0||OWS', p;, and temporal correlatiorp;. Next, two techniques for

estimatingp; are presented. The first is referred to asdkact
B_1 method wherebyp; is explicitly determined for theB bits
T = Z t. (11) ¢ =0,---,B —1in z(n). The second method is called the
= approximate methodh which breakpoints B and BR (as
defined in [10]) are determined from an ARMA model of the
In Section IlI, we will show how to computé, and then signal. Simulation results will be provided in support of the
employ (11) to computd’”. theory.
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A. Transition Activity for Single-Bit Signals we obtain

For single-bit signals, we have an expression given by (10)
[20] for independent bits; (n) andb;(n—1). In this subsection, - g[p, (n)b;(n — 1)]
we will present a more general result which is also applicable
when the temporal correlation betweérin) and b;(n — 1) = (VZX )(v; : Pr(y(n) + ara(n — 1)
JEX; € X

(i.e., p;) is not zero. This result is presented as Theorem 1

as follows. =kand z(n - 1) = j)
Theorem 1:If an ith bit b; has a probabilityp; of being = Z Z Pr(v(n) 4+ a1j = k andz(n — 1) = j)
a 1 and has a temporal correlation gf then its transition (ViEX;) (VEEX;)
activity ¢; is given by _ Z Z Pr(v(n) + a1j = k)
t; = 2pi(1 = pi)(1 = ps). (15) (VieX:) (Vhex:)
Proof: From the definition ofp; in (8), we have -Pr(z(n —1) =j) (22)
_ Elbmbitn = D] -} (16)
' pi — b} where the last step is justified becaugg:) and z(n — 1)
Substituting for E[b; (n)b;(n — 1)] from Lemma 1 into (16) are independent. Note that (19) can now be obtained by a
and solving for¢;, we get simple rewriting of (21). Furthermore, each of the summations
ti = 2pi(1 — pi)(1 — pi), (17) in (19) can be evaluated via the knowledge of the probability
distribution function. 9

which is the desired result. | d frm Th 5 dth d
Note that substitution op; = 0 (corresponding to the case n order to confirm Theorem 2, we compared the measure

of uncorrelated bits) in (15) reduces it to (10). In subseque¥!ues oft; andp; for the data generated by an AR(1) signal
sections, we present two methods (the exact and approximat&2 in Table I, with the estimated values predicted by the
methods) for calculating; from word-level statistics. Thesetheorem. The results shown in Fig. 1 indicate that measured

will then be substituted in (15) to obtais. and theoretical values match very well. For the word-level
o transition activityZ’, a total error of less than 1% was obtained.
B. Estimation ofp;: The Exact Method Similar results were obtained for the other signals in Table I.

From (8), we see that it is necessary to computeand The signals in Table | were chosen because they represent a
E[b;(n)b;(n—1)] in order to estimatg,. As p; can be obtained wide variety of signals. The signals SIG1 and SIG2 are based
from the probability distribution function af(n), we willnow on an AR(1) model with positive and negative correlations,
focus uponE[b;(n)b;(n — 1)], which is given by (recall that respectively, whereas the signal SIG2 has an AR(1) model with
A; is the set of all elements A" such that theth bitis a “1”)  positive correlation. Similarly, the signal SIG3 is based on an

MA(1) model, and the signal SIG4 is identical to SIG2 except
Elbi(n)bi(n — 1] =Pr((bi(n) = 1) and(bi(n = 1) = 1)) for the mean. The signal SIG5 is derived from an ARMA(3,5)
=Pr(z(n) € &, andz(n — 1) € &;). model.
(18) We now consider an MA(1) process and present the follow-
ing result.
In particular, we will employ AR(1) and MAV) signal  Theorem 3:Let j, k,I € X;, wherej + b1k € &; andk +

models to estimate[b;(n)b;(n — 1)]. First, we present the j, ¢ x;. Then, for an MA(1) signak(n) = y(n)+b1v(n—1)
following result for an AR(1) model.
Theorem 2: For an AR(1) signal

E[bi(n)bi(n — 1)] =353 Pr(y(n) =)
= Z Pr(z(n —1) = j) Z Pr(y(n) = k — a1j). ik
ViEX; VheX; -Pr(y(n —1)=k)Pr(v(n-2)=10). (22)
(19)
Proof: Employing the expression for an MA(1) signal
Proof: From the definition ofE[b;(n)b;(n — 1)] in (18), obtained by substitutingy = 1 and M = 0 into (12), we get
we have

Eb;(n)b;(n — 1)] Ebi(n)bi(n — 1)]
= > Y Pr(a(n)=Fkandz(n—1) = j). = Pr(v(n),
(VSEX:) (VKEX) x(n—1

),7(n —1), andy(n — 2): z(n) € X; and

) €
(20) = Pr(y(n),y(n - 1),and

)

)

2

(n)+by(n—1) € &; and
biv(n - 2) € ). (23)

Substituting the expression for an AR(1) model [obtained by v
substitutingV = 0, M = 1, and by = 1) in (12)] into (20), v

+ 2
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TABLE |
SIGNAL DETAILS
Signal ” z(n) I Oy I o l p [ U
SIG1 ¥(nr)— 05z(n—1) 866 | 1000 | -0.50 0
SIG2 v(n)+ 0.99z(n — 1) 141 1 1000 | 0.99 0
SIG3 || v(n)+ 0.5y(n—1) 100 { 111 ] 0.40 0
SIG4 | y(n) + 0.99z(n — 1) 141 | 1000 | 0.99 | 16384
SIG5 || y(n)+ 0.4y(n— 1)+ 0.2y(n — 2)+ 1000 | 2309 | 0.89 0
O7y(n—3)+ 5a(n— 1)+ 3z(n — 2)+
0.1z(n — 3) + 0.052(n — 4) — 2z(n — 5)
1 T T T T T T T
09 t+ B__.....,—_-:'-a"‘"-"-'""8"’""'—'"B""""'—'"B B
0.8 ﬁ .
2>
z o7tk ¢/ ’'measured transition activity' o— |
© ' ; ‘theoretical transition activity’ —+--
2 / 'measured temporal corrrelation’ -B--
2 o6} ‘theoretical temporal correlation’ -»-- |
~ 059 ; _
o
&
T 04 1
[
IS
S 03 N
[
g
E 02 4
@
-
0.1 4
0 4
_01 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

write (23) as follows:

Elbi(n)bi(n — 1) =YY ey = )

= Pr(y(n) = jandvy(n — 1) = k and

k I m
Y(n=2)=1>j+bik € X;and k+bil € X;) -Pr(y(n—1)=k) Pr(v(n-2) =1)
=SS Prlrln) = ) Pr(a(n — 1) = ) - Pr(a(n—3) = m)
i k1

_ wherej, k,l,m: j+ bk + bl € &; andk 4+ b1l 4+ bom € A,
P -2 =0 (24) It can be checked thaE[h;(n)b;(n — 1)] for AR(M) and
wherej + b1k € X; andk + bl € &;, which is the desired ARMA(V, M) signals is difficult to calculate forM > 1
result. 9 because we need to compute the joint probability distribution
In Fig. 2, we show the simulation results in support ofunction of z(n) and z(n — 1). However, we can estimate
Theorem 3. Again, we compared the measured values; forE[b;(n)b;(n — 1)] for an AR(M) or an ARMA(N, M) signal
andp; in data generated by the MA(1) signal SIG3 in Table by approximating the signal with an MA’’) signal, wherev’
with the values predicted by the theorem. In this case, vgsufficiently large, or approximating with an AR(1) signal.
found that the errors between the measured and predicted
values of7’ were less than 2%. C. Estimation ofp;: The Approximate Method

Finally, we consider the computation &f{b;(n)b;(n — 1)] In the previous subsection, an exact method for computing
for an MA(2) signal, and show that Theorem 3 can also g (i = 0, ..., B—1) was presented. For large valuesifthis
extended to calculat&[b;(n)b;(n — 1)] for an MA(V) signal. computation can become expensive. In order to alleviate this
For an MA(2) signale(n) = v(n)+b1y(n—1)+bay(n—2), problem, we will present a computationally efficient method to
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Fig. 2. Measured and theoreticgl and p; versus bit for the MA(1) signal SIG3.

Temporal correlation

Fig. 3. Temporal correlation versus bit.

estimatep; from word-level statistics. As mentioned beforeapproximately linearly. As proposed in [10], we divide the bits
this method (referred to as thepproximate methdduses a in the signal word into three regions of contiguous bits referred
model similar to that described in [10]. to as the LSBJinear, and MSB regions. The breakpoints?,

In Fig. 3, we plot the temporal correlatign versus bit po- and BP; separate the LSB from the linear region and the
sition ¢ for various audio, video, and communications channi&hear from the MSB region, respectively. Furthermore, the
streams described in Table X. It can be seen that the tempayedph of temporal correlatiop; versus bit positiory for the
correlationp; is approximately zero for the LSB’s and closd.SB, linear, and MSB regions has slopes of zero, nonzero,
to the word-level temporal correlatiop for the MSB’s. and zero, respectively.

Furthermore, there is a region in between the LSB’s andlIn spite of this similarity with [10], the proposed approach
MSB’s where the bit-level temporal correlatign increases differs from [10] in the following ways: 1) the word is
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Fig. 4. Temporal correlation versus bit.

TABLE I if z(n) is modeled using an ARMA model, then it can
MEASURED AND ESTIMATED BFy AND BF) be expressed using (13). Since the signals(n — i) are
Signal BP, BP, uncorrelated 5 F, for each of the signals can be estimated as
Measured | Estimated || Measured | Estimated log, |hilo. Given an adder which accepts two input signals
SIG1 11 10 13 13 with BF, breakpoints,BF,; and BFy., respectively, a good
SIG2 8 7 13 13 estimate for theB F, breakpoint at the output of the adder is
SIG3 8 7 10 9 max(BFy1, BFy3). Hence, the breakpoinBF, for a signal
SIG4 8 7 13 13 z(n) = X; hyy(n — ) can now be estimated as the maximum
SIG5 1 10 14 14 of the BPy's of the signalsh;y(n — i), as shown below
BPy = [logy hmax0+] (26)

divided into three regions based upon the correlation and not
the transition activity, 2) the way the breakpoint, and

BP; are computed, and 3) our use of (15) to comptite
and (11) to computd’ analytically. In particular, we do not

employ simulations to estimate transition activity of the mo )
oy y signals shown in Table |. The measured valueizf, was

significant bits. . . ) . .
Without loss of generality, we will assume that th),Sobtamed by counting the number of bits with correlation close

complement representation is employed. By definitigns= 0 tSolg.ZF_orénztance, fr?r:n Fig. 4,E\;N(ta)_tsee Ffpo forltr;_e S|g?al ¢
for i < BPy. Now, letp; = ppp, for i > BP, — 1. is ecause there are its with correlation close to

Hence, we can make the following approximation for tvvo’g' The measurgd and estimated valuesBdh are shown |'n
complement representation: able Il, where it can be seen that the measured and estimated
' ) values match quite well.
0;, BP 41 (i< BP) 2) Calculation of BR: Let the values of:(n) lie between
pi = (i = BRy+ )pol, (BPy <i<BP, —1) the valuesz iy and Zpax. IN @ normal distributionz,, =
B - Bh (i > BP, — 1) i — 30 and zy,x = p + 30. We define BP; such that
- or ¢ > L — 1, p; is approximately constant. Since the
PBI T sy fori > BR -1 tel tant. Since th

We now examine the relation between the parameters in fi¢amic range Ofr_(ﬂ) is Tmax ~ Tmin, the Ief':\st significant
set{pn,, BPo, BP,} and those ir{1, o, p} in order to derive 1082(%max—min) bits are required to cover this range. Hence,
expressions foppp,, BP,, and BP;. we have

1) Calculation of BF,: For an uncorrelated signaj(n),

a good estimate oBF, is given bylog, o.,, where o., is BP = [logy(#max = Zmin)]

the standard deviation of(n) [10]. If the signalz(n) has
nonzero correlation, then it can be modeled using a sig
model, which can then be used to calculB#,. For instance, BP; = [log, 60] (27)

where hmax = max(|h;|) and[k] is the integer nearest to.
We verified (26) by comparing the measured and estimated
é/talues of BP, obtained from data generated with the five

IA(glqlich reduces to
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Fig. 5. Temporal correlation and transition activity for SIG2 and SIGA4.

TABLE Il
WORD-LEVEL TRANSITION ACTIVITY FOR DIFFERENT NUMBER REPRESENTATIONS
Signal Unsigned, Two’s complement One’s complement Sign magnitude
Measured | Estimated [ % Error || Measured | Estimaled | % Error || Measured [ Estimated | % Error
SIG1 8.79 8.82 0.34 8.79 8.82 0.34 6.07 6.16 1.48
SIG2 4.99 5.03 0.80 4.99 5.03 0.80 4.65 4.71 1.94
SIG3 6.97 6.94 0.43 6.97 6.94 0.43 4.20 4.15 1.19
SIG4 4.99 5.03 0.80 4.99 5.03 0.80 4.65 4.86 4.52
SIGH 6.54 6.42 1.83 6.55 6.42 1.98 591 5.89 0.34

for a normal distribution where is the standard deviation of signals SIG2 and SIG4 in Fig. 5. Note that from Table I, SIG2
z(n). The estimate forBP; in (27) is different from that in and SIG4 are identical except for their meant can be seen
[10], which is given in (28) below for comparison purposesifrom Fig. 5 that the value oB P, 13, for SIG2 and SIG4 is
BP; = [log,(|p| + 30)]. (28) independent of:, which is also indicated by (27). For SIG4,
BP; is 15 because the binary representations,gfy, 19 384,

When |u| < 30, both (27) and (28) are approximately equa,'!mdxmim 13 384, have only one common most significant bit.

\|'_|V'th the mai(r:mum dlffirence O; 1 ‘Z);CF”””Q at = O't All that now remains in the approximate method is to
owever, in the case whei| > 3o, (27) is more accurate estimate the value fagg p, . If the model forz(n) is known,

than (28).' Th'.s IS c_iue j[o the fact that fm! > 30, _there ar(_a then we can use the exact method to calcufate, . If the
three regions in whiclp; is a constant. The first region consists

? " . ; __“model forz(n) is not available, then we assume thatp, = p
of the bit positionsi such thati < BFo. The second region which is the word-level temporal correlation. This is because,

has bit positiong lying betweenBPP; and another breakpoint .

. . ) . ) .. in most number representations like sign magnitude, two’s
BP,. The third region consists of bits with positions beyonc!ﬁI P , 9 gnitud :
complement, and one’s complement, the most significant bits

B P, where the bits do not have any transitions. The bits in the . . - .
: . . have higher weight than the least significant bits. Hence, the
third region can be calculated by computing the common maost ; - X )
- . : : carrelation of the most significant bits will be close to the
significant bits in the binary representations of the numbers . g : . :
o word-level correlation. This is especially valid for audio and
Tmax aNd z ;0. These are the numbers which lie at the tW?/ideo signals (see Fig. 3)
extremes of the probability distribution. g 9.2
We verified (27) by comparing it with the measured values .
of BP, obtained from data generated by various signals b Calculation of 7
Table I. The results are shown in Table Il, where it can be Employing (11), (15), (26), (27), we computed the value of
seen that the measured and estimated values match clodbly.word-level transition activityi” for the signals described
To verify that BP; is independent of the mean we plot the in Table | for two’s complement representation. The measured

bit-level temporal correlatiop; and transition activityt; for and estimated word-level transition activify for all of the
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signals are shown in Table IIl. It can be noted that the error ;) _ xstn)  x;tn)__xstn)  xjln)_ x3(n) x;(n)_— xp(n)

is less than 2% for two’s complement representation. @—9 @—D (:;D—D —HD}>
XZ n

xz(n) xz(n)

E. Effect of Signal Encoding/Number Representation Fig. 6. Adder, multiplier, multiplexer, and delay.

The results presented so far in this section (Theorems 2 and

3) have implicitly included the effect of the signal encoding:he error inT is less than 2% for all the signals except for
This is due to the fact that the elements of the setand; 5G4 where the error is less than 5%.
will depend upon the signal encoding. In this subsection, We3) Discussion: From the expressions fos; in (25) and
exam_i_ne epr_ic_itIy the effect of number representation on tlﬁ(gg), we see that the temporal correlation, and hence the
transition activity. i ) transition activity for unsigned, one’s complement, and two’s
In the previous subsections, we have considered two's COgmplement representations are nearly equal. Also, the transi-
plement number representation. The unsigned representagigl activity for sign magnitude is less than or equal to two’s
will have the same transition activity as two’s complement beymplement because the number of sign bits in sign magnitude
cause the most significant bits of the former behave 'dem'caﬂé(presentation (one) is less than or equal to the number of sign
to the sign bits of the latter. Therefore, we will not considegits in two’s complement representation. These conclusions
the unsigned representation any further. We will now analyzge supported via the results in Table 111, which show that the
the one’s complement and sign-magnitude representationsyransition activities for unsigned, one’s complement, and two’s
1) One’s ComplementThe one’s complement representagomplement are similar, while the transition activity for sign

For negative numbers, we can generate the two's complgrd two’s complement.

ment representation from that of the one’s complement by
adding a “1” to the LSB, which will usually affect only the
LSB’s. In the approximate method, since we assume that
LSB’s are uncorrelated, the activity of the LSB'’s in the one’s N the previous section, we presented techniques for esti-
complement will be close to that of the two’s complemenﬂ‘aﬂng the word-level transition activity for signals. In this
The remaining bits will have the same temporal correlatic¥ection, we will apply these techniques to compute the tran-
as in the two’s complement representation. Therefprefor sition activity for DSP architectures. First, we propagate the
one’s complement representation will be the same as that ggatistics of the input signal through a given DSP architecture

two’s complement representation. The measured and estimat@dhat word-level statistics for each signal in the architecture
word-level transition activityZ” for the signals in Table | are obtained. Then, we calculate the transition activity for

employing one’s complement is shown in the second set of tR&ch signal employing the techniques presented in the previous
three columns in Table IIl. The measured word-level transiticiEction. These are then added up to obtain the total transition
activity was obtained by generating data using the signal mo@&fivity of the architecture.
and measuring transition activity in that data. The errof’in
is less than 2% for one’s complement representation. A. Propagation of Word-Level Statistics
2) Sign Magnitude:In the sign magnitude representation, |n this subsection, we propagate the input statistics to the
there is only one sign bit, namely, the most significant bgutput for the following DSP operators:
bp—1(n). This bit will have the same temporal correlation 1) adder;
as the sign bits in two’s complement representation becaus%) multiplier;
the temporal correlation of the sign bit depends on the sign3) multiplexer;
transitions. The bit$;(n) for i <BF, are uncorrelated as in 4y delay.

the case of two's cpmplement. We again assume a Iln_ear mOde’I’hese operators were chosen due to their widespread use in
for p; for BRy < i< BP — 1. The resulting expression for pgp algorithms. First, we start with the adder.
pi is as follows: 1) Adder: In Fig. 6, the two signals;;(n) (i = 1,2) at the
input to the adder have statistigs o;, p; (¢ = 1,2). The mean
0 (i < BPy) ps, varianceos, _and temporal correlatiops at the output of
i the adder are given by (30)-(32) shown at the bottom of the
=B+ 1)rsr BPy < i<BP, -1

P BP. —BR, (BRy <i<BP—1) next page. ‘

1, (BPL—1<i<B-1) If z1(n) = X7 cz(n —¢) andza(n) = ga(n — k) as
PBP, (i=B-1). in the case of an FIR filter, we have (33)—(35), shown at the
(29) bottom of the next page.

The measured and estimated word-level transition activity2) Multiplier: In this subsection we examine how to prop-
T for the signals are shown in the last three columns of Taldgate word-level statistics through a multiplier. In Fig. 6, the
lll. As always, the measured word-level transition activitywo signalse;(n) andz,(n) at the input to the multiplier have
was obtained by generating data using the signal model astdtisticsu1, o1, p1 and uso, o2, p2, respectively. The statistics
measuring transition activity in that data. It can be seen thatt the output of the multiplier are given by the following

IV. TRANSITION ACTIVITY FOR DSP ARCHITECTURES




RAMPRASAD et al: ESTIMATION OF SIGNAL TRANSITION ACTIVITY

equations:

pi3 = Elzs(n)] = Elzi(n)z2(n)]

of = Ela3(n)] = ui = E[(z1(n)z2(n))(x1(n)z2(n))]
— E*[z1(n)za(n)]

Bl (n)az(n)e1(n — 1)372(271 — V] = E*[za(n)za(n)]

If z2(n) is a constanty, then uz = ¢, 03 = c101, and

p3 = pP1-
3) Multiplexer: When two signalse; (n) and z2(n) with

statistics{/1, p1, 01} and{pz, p2, 02}, respectively, are mul-

tiplexed (Fig. 6) by a control signal with probability. and
correlationp,., then the statistic§ s, p3, 03} of z3(n) at the

output of the multiplexer are given by (assuming 0 and 1 dA" Z1(7

the control signal selects; (n) andxz(n), respectively)
ps = Elzs(n)] = (1 = pe)ps + pepia (36)
o3 = E[23(n)] — 13 = E[(1 - pe)at(n) + per3(n)]
— (L= pe)’uii = P23 = 2pe(1 = pe)purpiz
= (1= pe)oi + pe(l = pe)ui + peos
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xO(n) xl(n) xz(n) x?(n) x4(n)
xj(n) X6 (n) X7(’1) Xg(") Xg(n)

X/O(”) X11(”) xp2(n) " x;3(n)
Fig. 7. Direct form FIR filter.
where E[z3(n)z3(n — 1)] is given by

Elzs(n)zs(n —1)]
= (1 - pc)(l — Pe +pcpc)E[$l(n - 1)371(”)]

+ pe(l = pe)(1 = pe) Elz1(n — 1)z2(n)]
+ pe(l = pe)(1 = pe) Elz2(n — 1)z1(n)]
+pc(pc — PepPe + pC)E[$2(n - 1)371(71)]

where the expectations in the above formula can be obtained
from the autocorrelation and cross-correlation values of the
input signals. Also,BP, for z3(n) is the maximum ofBFy
n) and z2(n).

4) Delay: A delay shifts the signal by one time unit, which
in this case is a clock period. The statistics at the output of a
delay element are identical to that at the input.

B. Example 1: FIR filter

We illustrate propagating word-level statistics using the
five-tap finite impulse response (FIR) filter in Fig. 7, where

B 2 B coefficientse; = ¢; = 0.09765625,¢co = ¢4 = 0.1953125,
+pe(l = pe)ir; 2pc(12 Pe)hpz (37) andc; = 0.39453125. The correlationg. g, p11, p12, and ps
- E[$3(”)$3(”2_ Dl = w3 (38) require the lag-2, lag-3, lag-4, and lag-5 correlations of the
o3 input to be known. If they are not available, then for most
p3 = Elxs(n)] = Elzi(n) +z2(n)] = pn + p2 (30)
o3 = Ela3(n)] - 13
=02 + 03 + 2E[z1(n)z2(n)] — 241 12 (31)
_ Elzs(n)as(n - 1] -
3= 2
03

El(z1(n) + 2a(n))(1(n — 1) + 22(n = )] = (1 + p2)?

= 2

93
_ p10 + p203 + Elza(n)z1(n = D] + Efwi(n)za(n = 1)] — 2p1p19
- 2 . (32)
k
H3 IN<Z Ci) (33)

k k

03 =o? 2634—22 Z p(j —i)eicy (34)

= =0 j=1+1

1 kok k=2 k
> cicipr + chicjp(j —iF D)+ Y ccp(—i—1)

=0 =0 j=12

1=0j5=¢+2

P3

= (35)
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TABLE IV
WOoRD-LEVEL STATISTICS FOR DIRECT FORM FIR FHLTER
Signal i p 4
Measured | Estimated | % Error || Measured | Estimated | % Error || Measured | Estimated | % Error
To,T1,T2,T3,T4 99.7108 99.7108 0.00 0.9199 0.9199 0.00 55.5663 55.5663 0.00
Ts,Tg 9.7445 9.7374 0.07 0.9183 0.9199 0.17 5.4648 5.4264 0.71
Te,T8 19.4827 19.4748 0.04 0.9198 0.9199 0.01 10.8646 10.8528 0.11
fotrd 39.3477 39.3390 0.02 0.9196 0.9199 0.03 21.9415 21.9226 0.09
T10 29.2272 29.2122 0.05 0.9529 0.9534 0.05 16.0293 15.9868 0.27
11 68.5749 68.5512 0.03 0.9660 0.9661 0.01 37.1125 37.0569 0.15
12 88.0576 88.0259 0.04 0.9763 0.9764 0.01 47.1728 47.1104 0.13
13 97.8021 97.7633 0.04 0.9811 0.9812 0.01 51.9925 51.9001 0.18
TABLE V
ToTAL TRANSITION ACTIVITY FOR FIR HLTERS
Signal Direct form Transpose
Measured I Estimated l % Error || Measured | Estimated [ % FError

SIG1 148.31 148.92 0.13 145.45 145.97 0.36

S1G2 76.64 76.40 0.31 72.84 72.26 0.80

SIG3 113.15 113.64 0.43 109.00 109.44 0.40

SIG4 74.55 74.81 0.35 70.25 70.53 0.40

SIG5 104.63 102.10 2.42 101.41 98.62 2.75

simulation usig a C program. It can be seen that the total
transition activity for the transpose form is always less than
that for the direct form because of the lower transition activity
at the inputs to the delays. The lower transition activity at
the inputs to the delays is because multiplying by a constant
of magnitude less than 1 reduces the variance, and hence the
transition activity.

C. Example 2: Folded FIR Filter

Fig. 8. Transpose FIR filter. Folding [26] is an algorithm transformation technique that

real-life signals, the lag-correlation can be approximated byallows the mapping of algorithmic operations to a given set of
pi(1). Such an approximation corresponds to approximatirﬂfrdv‘_’a_re units. For_ln_stance, the five-tap FIR filter in Fig. 7
the signal with an AR(1) model. The statistics of signals withifontaining five multiplies and four adds can be folded onto
the filter can be calculated using (33)—(35). As an example, thgee multipliers and two adders using additional delays and
equations for the mean, variance, and temporal correlationfBgltiplexers as shown in Fig. 9.
the output,z;3(n) are given in (39)—(41) shown at the bottom The statistics of the signals of the unfolded filter can
of the page. be calculated using (33)—(35). These are used along with
The measured and estimated word-level statistics for videG35)—(38) to calculate the statistics of signals of the folded
data are shown in Table IV. We see that the estimated statisfiier. As an example, the statistics of the signal -(n)
match the measured statistics very closely, with errors of legstained by multiplexingz,;(n) and z7(n) are given by
than 1%. Table V shows the measured and estimated tdg®)—(44) shown at the bottom of the next page.
word-level transition activity for the FIR filter (when the The measured and estimated word-level statistics are shown
signals from Table | are passed through the filter) in Fig. 7 ama Table VI. The measured and estimated word-level statistics
its transpose in Fig. 8. The measured values were obtainedrbbgtch very closely, with errors of less than 1%. Table VII

H13 = [ <Z Ci) (39)
i=1

5 4
ofs =0’ D G +2> Y ol - e (40)
=1 i=1 j=i+1
4 5 5 3 5
o? Zcici-i—l + chicjp(j —i+1)+ Z Z cicip(j —i—1)
i=1 i=1j=i i=lj=i+2
P13 = 3 . (41)

J13
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X0, 14(Mx 4(n)=xg(n)+xg(n))

xz(n)
N X]j(”)
xH(n)
Fig. 9. Folded direct form filter.
TABLE VI
WORD-LEVEL STATISTICS FOR FOLDED DIRECT FORM FIR HLTER
Signal n P o
Measured [ Estimated | % Error || Measured [ Estimated | % Error || Measured | Estimated | % Error
Zo,4 99.7108 99.7108 0.00 0.7203 0.7203 0.00 55.5663 55.5663 0.00
1,3 99.7108 99.7108 0.00 0.8150 0.8150 0.00 55.5663 55.5663 0.00
L2 99.7108 99.7108 0.00 0.9600 0.9600 0.00 55.5663 55.5663 0.00
Z59 9.7444 9.7374 0.07 0.7200 0.7203 0.04 5.4648 5.4264 0.71
Ze8 19.4827 19.4748 0.04 0.8143 0.8150 0.09 10.8646 10.8528 0.11
210,14 29.2272 29.2122 0.05 0.8122 0.8126 0.05 16.0297 15.9868 0.27
Ti1,7 53.9613 53.9452 0.03 0.5096 0.5094 0.04 33.8074 33.8042 0.01
TABLE VII

ToTAL TRANSITION ACTIVITY FOR FOLDED DIRECT FORM FIR FLTER

Signal “ Measured I Estimated I % Error

SIG1 202.14 208.39 3.09
SIG2 119.48 123.30 3.20
SIG3 187.04 193.08 3.23
S1G4 118.18 120.64 2.08 Fig. 10. IR direct form filter and transpose.
SIG5 166.56 169.78 1.93

D. Example 3: lIR Filter

shows the measured and estimated total word-level transitiorin this example, we propagate word-level statistics through
activity for the folded FIR filter in Fig. 9. The error betweerthe simple infinite impulse response (IIR) filter in Fig. 10,
the measured and estimated transition activity for the fivgherec; = 0.1.

signals is less than 4%. A comparison between the transitioriThe equations for the statistics of the signals in the direct
activities of the original FIR filter (see Table V) and the foldedorm IIR filter are given by (45)—(49) shown at the bottom of
architecture (see Table VII) indicates that folding increases ttiee next page.

number of transitions. This conclusion is consistent with that The measured and estimated statistics are shown in Table
observed in [6]. VIII. The error between the measured and estimated statistics

c1+c+ 2
Mi1,7 = w (42)

o117 =2050% + 2(c] + ¢5 + & + 2c102p + 2c203p + 2c103p(2))0” + Ap* + (1 + ez + 3)2p? — 2(cres + cacs + B)p?

2
1
=2c30% 4+ 2(2 4 3 + &3 + 2c160p + 2c0¢3p + 2¢1¢3p(2)) 0% + (e1 + )2 ?
2cic3E[z(n)z(n — 2) + z(n)z(n — 1)] + 2c2c3E[z(n — 1)z(n — 2) + 2%(n — 1)]
+263E[z%(n — 2) + z(n — Da(n — 2)] — (e1 + c2 + 2¢3) 2
p11,7 = 2 (43)
1,7

~ 20%c3(c1(p(2) + p) + (c2 +e3)(p+ 1)) — (1 + c2)?pi?
B 0'%1 7 ' “9




730 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 16, NO. 7, JULY 1997

TABLE VIl
WOoRD-LEVEL STATISTICS FOR DIRECT FORM IIR FILTER
Signal I p [
Measured | Estimated [ % Error || Measured I Estimated I % Error || Measured | Estimated [ % Error
T 1.43 1.43 0.00 0.9628 0.9628 0.00 7349.20 7349.20 0.00
T,%9 1.59 1.58 0.63 0.9672 0.9695 0.24 8132.59 8135.16 0.03
T3 0.16 0.16 0.00 0.9672 0.9695 0.24 812.92 813.52 0.07
TABLE IX
ToTAL TRANSITION ACTIVITY FOR |IR FILTERS
Signal Direct form Transpose
Measured l Estimated l % Error || Measured I Estimated l % Error
SIG1 35.22 35.52 0.85 35.68 35.97 0.81
SIG2 18.36 18.21 0.82 16.82 16.38 2.62
SIG3 26.86 26.92 0.22 26.33 27.25 3.49
S1G4 17.77 17.86 0.51 16.11 15.92 1.18
SIG5H 24.88 24.38 2.01 23.66 23.26 1.69

is less than 1%. Table IX shows the measured and estimated V. RESULTS WITH REALISTIC BENCHMARK SIGNALS

total word-level transition activity for the direct form IIR filter

and its transpose in Fig. 10. We see that the total transitionWe have so far presented results using the stationary,
activity is always less for the transpose form due to thgynthetic signals in Table I. In this section, we will present sim-
lower transition activity at the input to the latch becauselation results for the nonstationary, naturally occurring, audio,
multiplication by a constant of magnitude less than 1 reduceleo, and communications channel signals described in Table
the variance, which in turn reduces the transition activity. X. First, we apply the approximate method (see Section 11I-C)

x3(n) = Z cixo(n —1) (45)
i=1

Elxo(n)as(n)] =E

Z cizoln — L)xo(n)]

n n

= lim Z i E[zo(n —i)xo(n)] = lim Z(cip(i)ag )
i=1 i=1
aug , ogep(l)

=T_a +i coo() (assumingo(é) = p*(1)) (46)

Elwo(n — Das(n)] = 10 + 3 Y cipli— 1)

l1-a i=1
Y B [assumingo(i) = p*(1)] (47)
T l—c 1—cp(1) Py =r

2 oo
C ; .
Blao(n)ws(n = D] = {50+ 08 3 cili +1)
=1

2 2 2
apg | ogep(l) o ;
= assuming(z) = p*(1
el s iy (i) = (1))
Ho
M1 =

_1—61

08 + 2E[xo(n)x3(n)] — 2pops

0} =08 + Aot + 2E[xo(n)z3(n)] — 2pops = =2 (48)
1
_ Elm(n)ai(n - 1] - 4
pL = o2
_ p()od + p12o? + Elzs(n)zo(n — 1)] + Elzo(n)zs(n — 1)] — 2poci i1
of
_ p(1)od + Elzs(n)zo(n — 1)] + Elzo(n)zs(n — 1)] - 2/1001/11' (49)

of(1—cf)
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TABLE X
DESCRIPTION OF DATA-SETS
Data set || Description I I o [ P
Audio3 2.88MB of 16 bit PCM audio data (music) 1.4285 | 7349.20 | 0.9628
Audiod 2.88MB of 16 bit PCM aundio data (music) -17.6342 | 4040.40 | 0.9712
Audiob 0.37MB of 16 bit PCM audio data (speech) 59.4566 | 2661.75 | 0.9005
Audio6 0.61MB of 16 bit PCM audio data (speech) 23.6151 | 2328.79 | 0.9647
Audio7 2.88MB of 16 bit PCM audio data (music) -39.3460 | 3086.30 | 0.9920
ATM LAN || 0.80MB of 16 bit communications channel data 0.4861 | 5581.60 | 0.2952
Video3 9.70MB (380 QCIF frames) of 8 bit video data | 99.7108 55.57 | 0.9199
TABLE XI
MEASURED AND ESTIMATED BPy AND BP;
Signal BP, BP
Measured l Estimated || Measured l Estimated
Audio3 10 11 16 15
Audio4 9 10 15 15
Audios 0 3 15 14
Audio6 1 9 14 14
Audio7 5 9 14 14
ATM LAN 12 12 15 15
Video3 1 1 8 8
TABLE XilI
WORD-LEVEL TRANSITION ACTIVITY
Signal Unsigned, Two’s complement One’s complement Sign magnitude
Measured | Estimated [ % Error || Measured | Estimated [ % Error || Measured | Estimated | % Error
Audio3 6.42 6.32 1.56 6.43 6.32 1.71 6.17 6.24 1.13
Audio4 5.80 6.06 4.46 5.80 6.06 4.46 5.55 5.89 6.13
Audio5 4.78 4.40 7.95 4.79 4.40 8.14 4.22 4.23 0.24
Audio6 5.38 5.59 3.90 5.38 5.59 3.90 4.62 5.43 17.53
Audio7 5.05 5.52 9.31 5.05 3.52 9.31 4.78 5.44 13.81
ATM LAN 7.76 7.56 2.58 7.76 7.56 2.58 7.09 6.94 2.12
Video3 2.31 2.15 6.93 2.31 2.15 6.93 2.16 2.15 0.15
TABLE XIll
ToTAL TRANSITION ACTIVITY FOR FIR HLTERS
Data set Direct form Transpose
Measured | Estimated I % Frror || Measured l Estimated l % Error
Audio3 102.16 100.76 1.37 99.14 98.01 1.14
Audio4 91.40 94.37 3.25 88.42 90.62 2.49
Audio5 75.80 68.42 9.74 73.23 66.55 9.12
Audio6 84.94 86.63 1.99 82.03 83.09 1.29
Audio? 78.82 - 85.65 8.67 76.07 82.41 8.33
ATM LAN 129.35 124.76 3.55 127.94 122.23 4.46
Video3 31.58 33.02 4.56 28.29 31.64 11.84

to compare the measured and estimated transition activity foe AR(1) models resulted in higher errors.The measured and
these signals. Then, we process these signals through the diestimated value aB F, is shown in Table XI. The difference in
form FIR (Fig. 7) and IIR (Fig. 10), transpose FIR (Fig. 8) anthe measured and estimated valuedaf;, for signals Audio5,

IIR (Fig. 10), and the folded direct form FIR (Fig. 9) filters tcAudio6, and Audio7 is due to the fact that the least significant
compute the total transition activity in these structures. bits of these signals are correlated, as can be seen from Fig. 3.
From Table Xll, we see that for unsigned, two’'s comple-
ment, and one’s complement representations, the estimation
For the audio, video, and communications channel dataror in7 is less than 10%. For sign-magnitude representation,

described in Table X, the approximate method was employtt error in7” is less than 18%.

to estimate transition activity. The results are shown in Tab " -

Xll, where the measured t%ansition activity was calculated’ Total Word-LeyeI Transition Activitf

directly from the data. We assumeg s, = p, which is the of FIR and IR Filters

word-level temporal correlation. To estimaid’, we assumed In this subsection, we present the measured and estimated
AR(1) models for all data sets except Audio5 and Video®ansition activity with audio, video, and communications
We used MA(10) models for Video3 and Audio5 becausehannel data for the direct form filter in Fig. 7 and its transpose

A. Realistic Benchmark Signals
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TABLE XIV
ToTAL TRANSITION ACTIVITY FOR FOLDED DIRECT FORM FIR FLTER
Data set H Measured | Estimated ] % Error
Audio3 159.14 158.29 0.53
Audiod 145.40 116.89 1.02
Audiob 123.40 132.94 7.73
Audiob 136.12 138.88 2.03
Audio? 130.60 135.04 3.40
ATM LAN 202.46 207.93 2.70
Video3 51.32 52.95 3.18
TABLE XV
ToTAL TRANSITION ACTIVITY FOR |IR FILTERS
Data set Direct form Transpose
Measured | Estimated | % Error || Measured | Estimated [ % Error
Audio3 24.36 24.26 0.41 22.92 22.56 1.57
Audio4 21.82 22.49 3.07 20.34 20.78 2.16
Audiob 18.06 17.15 5.04 16.99 15.55 8.48
Audio6 20.29 20.85 2.76 19.02 19.39 1.95
Audio? 18.87 20.33 7.74 17.38 18.59 6.96
ATM LAN 30.59 29.25 4.38 30.17 28.68 4.94
Video3 7.69 7.74 0.65 6.22 6.93 11.41
TABLE XVI
RUN TIMES IN SECONDS FORDIRECT FORM FILTER
Signal H Simulation | DBT I Approximate method I Fast Method
Audio3 42.30 | 6.38 2.25 0.06
Audiod 40.28 6.10 2.41 0.13
Audiod 5.00 0.83 3.10 1.23
Audio6 8.60 1.46 2.58 0.18
Audio7 39.16 6.65 2.58 0.21
ATM LAN 13.05 | 1.86 2.21 0.05
Videol 138.91 | 37.95 0.01 0.01

in Fig. 8 (see Table XIIl), the folded direct form filter in Fig. 9level statistics [viz. the meaf), variance(s?), and temporal
(see Table X1V), and the IIR filter and its transpose in Fig. 1€orrelation(p)], the signal generation model (AR, MA, and
(see Table XV). The errors ifl" for all the filters are less ARMA), and the number representation. Two techniques were
than 12%. Table XVI compares the run time for simulatiopresented to estimate the transition activity of the bits com-
and the run time for the approximate method on an 85 MHxising the signal word for stationary signals only. However,
SparcStation 5. We see that in most cases, the run time opossible generalization is to adaptively compute the signal
the approximate method is an order of magnitude less thstatistics and obtain a more accurate estimate of the signal
that for simulation. The run time for simulation depends otransition activity. We studied common filter examples to
the length of the input sequence, whereas the run time emonstrate the propagation of the word-level statistics of the
the approximate method depends on the width of the signégut to determine the total transition activity in the filter. The
(8 bits for video3 and 16 bits for the rest). This is becausmethodology presented here provides a basis for high-level
in our method, the computational complexity is determingsbwer estimation and optimization, whereby the information
by the calculation ofp; using (6) where the summation isregarding the signal characteristics along with the topology
over 28 elements wheré is the bit width. We can make theof the DSP data-flow graph can be exploited. While the
computation time ofp; essentially independent of bit widthpresent work has focused upon the problem of high-level
by calculating the sum over points iA; spaced a certain power estimation, our current effort is being directed toward
distance (2%7%/2) apart with basically no loss of accuracyautomated high-level synthesis of low-power DSP hardware.

of the sum. The running times using the fast approximafgcorporation of circuit-level parameters into the proposed
method and the dual bit type (DBT) method are also shown jifethodology is also planned for the future.

Table XVI. The run times for the approximate method can be
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