

Title:
A 0.44 uJ/decision, 39.9 us/dec, Recurrent Attention In-memory
Processor for Keyword Spotting

Archived version
Accepted manuscript: the content is identical to the published
paper, but without the final typesetting by the publisher

Published version
DOI :

10.1109/JSSC.2020.3029586

Journal homepage https://ieeexplore.ieee.org/abstract/document/9239367

Authors (contact)

Hassan Dbouk (hdbouk2@illinois.edu)
Sujan K. Gonugondla (gonugon2@illinois.edu)
Charbel Sakr (sakr2@illinois.edu)
Naresh R. Shanbhag (shanbhag@illinois.edu)

Affiliation University of Illinois at Urbana Champaign

Article begins on next page

1

A 0.44µJ/dec, 39.9µs/dec, Recurrent Attention
In-memory Processor for Keyword Spotting

Hassan Dbouk, Student Member, IEEE, Sujan K. Gonugondla, Student Member, IEEE, Charbel Sakr, Student
Member, IEEE, and Naresh R. Shanbhag, Fellow, IEEE

Abstract—This paper presents a deep learning-based classifier
IC for keyword spotting (KWS) in 65 nm CMOS designed using
an algorithm-hardware co-design approach. First, a Recurrent At-
tention Model (RAM) algorithm for the KWS task (the KeyRAM
algorithm) is proposed. The KeyRAM algorithm enables accuracy
vs. energy scalability via a confidence-based computation (CC)
scheme, leads to a 2.5× reduction in computational complexity
compared to state-of-the-art (SOTA) neural networks, and is well-
suited for in-memory computing (IMC) since the bulk (89%) of its
computations are 4b matrix-vector multiplies. The KeyRAM IC
comprises a multi-bit multi-bank in-memory computing (IMC)
architecture with a digital co-processor. A sparsity-aware sum-
mation scheme is proposed to alleviate the challenge faced by
IMCs when summing sparse activations. The digital co-processor
employs diagonal major weight storage to compute without any
stalls. This combination of the IMC and digital processors enables
a balanced trade-off between energy efficiency and high accuracy
computation. The resultant KWS IC achieves SOTA decision
latency of 39.9µs with a decision energy < 0.5µJ/dec which
translates to more than 24× savings in the energy-delay product
(EDP) of decisions over existing KWS ICs.

Index Terms—In-memory computing (IMC), keyword spotting
(KWS), machine learning, recurrent attention networks

I. INTRODUCTION

SPEECH has emerged as a natural mode for humans to
interact with intelligent Edge devices including smart

phones and personal digital assistants [1]. A full fledged speech
recognition system is complex and power hungry making it
prohibitive for resource-constrained applications at the Edge.
Preceding a speech recognizer with an ’always-on’ keyword
spotting (KWS) system enables such devices to continually
sense, detect, and classify speech segments under stringent
energy, computational and storage constraints.

A typical keyword spotting (KWS) pipeline (Fig. 1) pro-
cesses raw audio in two stages: feature extraction and classifi-
cation. The classification stage, which is often implemented via
neural networks, dominates the complexity of the KWS system
and presents a challenge for efficient KWS realization. Re-
cently, various deep learning-based KWS classifier algorithms
such as deep/convolutional neural networks (DNNs/CNNs) and
recurrent NNs (RNNs) have been shown to achieve high

Hassan Dbouk, Charbel Sakr, and Naresh R. Shanbhag are with the Co-
ordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801 USA (e-mail: hdbouk2@illinois.edu; sakr2@illinois.edu;
shanbhag@illinois.edu).

Sujan K. Gonugondla was with the Coordinated Science Laboratory, Uni-
versity of Illinois at Urbana-Champaign, Urbana, IL 61801 USA. He is now
with Amazon, Seattle, WA, USA (e-mail:gsujan@amazon.com).

Feature extraction
(MFCC)

Classifier
(Neural Net.)

High complexityLow complexity

this work

Voice activity detector (VAD)

enable

time (s)

Raw audio data
KWS system

no

yes

stop

off

no

yes

stop

off

Recognized
keyword

Fig. 1. A typical keyword spotting (KWS) pipeline. The classifier, which is
implemented via neural networks, dominates the complexity.

(> 90%) accuracies [2] but at the expense of very high
computational costs making them unsuitable for deployment
on Edge platforms.

To that end, existing KWS ICs [3]–[7] aim at implementing
off-the-shelf NN-based classifiers for KWS while focusing on
minimizing the power consumption in order to maintain contin-
uous operation. These ICs have mostly been: 1) implemented
in digital utilizing low-power techniques such as voltage over-
scaling [4], [5], [7]; and 2) benchmarked with simple datasets,
e.g., TIMIT. One exception is [6] which implements a binarized
RNN-based KWS on an in-memory computing (IMC) architec-
ture for the more complex Google Speech dataset [8]. Recently,
[7] reported the lowest power consumption of 510 nW for a
KWS IC by implementing depth-wise separable convolutional
neural networks (DSCNNs) [9]. However, the implementation
of [7] is limited to two keywords and requires 64 ms to classify
one speech segment. For a ten keyword classification, the power
penalty increases to 16µW [6].

Realistically, speech related events occur infrequently which
makes the ’always-on’ detection of wake words using a KWS
IC to be energy sub-optimal. Especially since a voice activity
detector (VAD) IC can achieve PVAD < 200 nW [10], which is
much less than the KWS system. Therefore, by gating the KWS
system with a VAD (Fig. 1), the total system power Ptot can
be significantly reduced and the power constraint on the KWS
system is relaxed, as long as the audio events occur infrequently.
In fact, it can easily be shown that the total system power can
be expressed as:

Ptot = PVAD + αEd (1)

where α is the voice activity rate (activity/s) and Ed is the
decision energy of the KWS IC. Expression (1) implies that
the traditional viewpoint of minimizing the power of KWS ICs
needs to be reconsidered. Instead, designers need to reduce the

2

energy per decision Ed for a specified decision latency. This can
be done by minimizing the decision-level energy-delay product
(EDP) of the KWS IC, which is the focus of this work.

With that design goal in mind, this work employs an
algorithm-hardware co-design approach to realize KWS for
Edge devices with < 1µJ/decision and a latency of <
50µs/decision. To the best our knowledge, this is the first
work to propose using a Recurrent Attention Model (RAM)
[11], previously proposed for image classification, for KWS
(KeyRAM algorithm) and the first IC implementation of RAM
for KWS (KeyRAM IC). The use of RAM for the KWS task
reduces the computational complexity of inference compared
to state-of-the-art neural network-based algorithms (Fig. 6) at
iso-accuracy. The KeyRAM algorithm is mapped onto an IC
consisting of two multi-bit sparsity-aware IMCs and a digital
co-processor with a 96 × 512 standard 6T SRAM. The IC
stores all model weights on-chip to further increase the energy
efficiency. As a result, up to 7.6× savings in energy/decision
and > 24× savings in EDP of decisions over state-of-the art
IMC ICs for KWS is achieved, while realizing the lowest
reported decision latency of 39.9µs. Preliminary measurement
results were reported in [12].

This paper is organized as follows: Section II provides the
necessary background on IMC and RNNs. Section III explains
the KeyRAM algorithm and demonstrates its effectiveness.
The circuit and architectural implementation details of the
KeyRAM IC are described in Section IV. Measurement results
demonstrating the classifier’s confidence, accuracy, latency, and
energy are presented in Section V. Section VI concludes this
paper.

II. BACKGROUND

A. In-Memory Computing

In-memory computing (IMC) architectures [13]–[22] have
drawn much interest due to their ability to reduce the energy
and latency cost of memory accesses for machine learning
applications. The IMC concept was first introduced in [23]
and was later followed by numerous prototype ICs [13]–
[15] demonstrating its effectiveness. Since then numerous IMC
architectures [17]–[22] spanning different bitcell layouts, e.g.,
6T, 8T, 10T, and bit-precision support, e.g., binary, ternary,
multi-bit, have been proposed. In this section, we focus on the
IMC design in [13], [14], which is a mixed-signal multi-bit
dot-product processor based on embedding the processing into
the standard 6T SRAM bitcell array (BCA). This architecture
realizes dot products efficiently, while preserving the density
of the BCA. The IMC stores Bw-bit weights in the BCA in
a column major format and computes dot-products between
these weights and inputs stored in buffers in three steps: 1)
bitcells (BCs) storing digital weights are concurrently accessed
via pulse-width modulated word-lines (WLs), such that the
voltage discharge ∆VBL on each bit-line (BL) is proportional to
the multi-bit weight in the memory; 2) the BL discharges are
multiplied with the corresponding input data from buffers via
column pitch-matched charge redistribution-based multipliers;

Digital IMC

Memory

Mixed Signal
Processing

SRAM
Bank

SRAM
Bank

Memory

PE Array

flexible – high precision

high energy – limited parallelism

energy efficient – massive parallelism

limited flexibility – low precision

Fig. 2. A high-level comparison between a von Neumann digital architecture
and an IMC architecture.

and 3) the multiplier outputs are summed across the columns
via charge sharing across BLs resulting in the final dot product
which is converted to digital via ADCs. The accuracy of the
IMC computations can be traded off with energy by controlling
the word-line voltage VWL. While IMC architectures (Fig. 2)
have shown remarkable gains (100×) in the energy-delay
product (EDP) over a von Neumann equivalent with minimal
loss in inference accuracy [14], they typically are limited to
low-precision computations, and lack the flexibility of the von
Neumann architecture due to their mixed-signal nature.

B. Recurrent Neural Networks

Recurrent neural networks (RNNs) [24] are a special type of
fully connected (FC) networks characterized by a hidden state
vector. RNNs maintain the hidden state vector via a feedback
structure, which enables them to store temporal features when
processing data sequentially. This makes RNNs suitable for
speech related tasks which exhibit strong temporal correlations.

Given a length T sequence of N -dimensional input vec-
tors x1, ...,xT , at each timestep t, an RNN updates its L-
dimensional hidden state vector ht as follows:

ht = fh(ht−1 ‖ xt) = σ
(
Wh · (ht−1 ‖ xt) + bh

)
(2)

where σ(.) is an element-wise non-linearity function (typically
a ReLU or a sigmoid), (. ‖ .) denotes the vector concatenation
operation, and Wh ∈ RL×(L+N) and bh ∈ RL are the learned
weights and bias terms associated with the RNN. The initial
hidden state vector h0 is the all zeros vector. In an M -way
classification setup, an RNN is also equipped with a classifier
that maps the hidden state vector into class probabilities.
Specifically, we have

y = fy(hT) = softmax
(
Wy · hT + by

)
(3)

where y ∈ [0, 1]M is a vector of class scores, Wy ∈
RM×(L+N) and by ∈ RM are the learned weights and bias
terms associated with the classifier. The classifier needs to op-
erate on the final hidden state vector in the sequence hT , which
is a function of all the previous input vectors. During testing,

3

Model

ht-1

yt

xt

lt

fc: fully connected layer

W x by = × +

din

d
o

u
t

fc: fully connected layer

W x by = × +

din

d
o

u
t

lt xt

qt

fc3

gt

ht-1

pt

relu

fc4

relu

ht

yt lt+1

fc1

relu

fc2

relu

fc6

htanh

fc5

soft

soft

relu

htanh

soft max layer

ReLU activation

HardTanH activation

ht

f2

fi : fci + non linearity

f1

f3

f4

f5 f6

Fig. 3. The Recurrent Attention Model (RAM) for KWS.

the pre-softmax output vector ỹ is sufficient for predicting the
associated class c ∈ {1, ...,M}, since we have:

c = arg max
i∈[M]

{yi} = arg max
i∈[M]

{ỹi} (4)

Similar to other network architectures, RNNs can be trained
in a supervised learning setup using labeled data and the
stochastic gradient descent (SGD) algorithm. The required
gradients can be computed using back-propagation through
time (BPTT) [25], which is essentially the traditional back-
propagation algorithm with the recursive computation of the
RNN unrolled.

III. THE KEYRAM ALGORITHM

This sections describes the KeyRAM algorithm and compares
its performance against state-of-the art neural network-based
algorithms for KWS. KeyRAM employs the RAM algorithm
[11], originally proposed for image classification, for the KWS
task. It employs an RNN in a feedback loop to selectively
process input subsets (glimpses) in the feature space, as op-
posed to processing the entire input feature, thereby reducing
the computational complexity.

A. KeyRAM Algorithm

The KeyRAM algorithm (Fig. 3) employs 6 fully connected
layers (f1 to f6) to track the informative features across multiple
glimpses t via a hidden state vector ht. At each glimpse t,
KeyRAM combines the previous hidden state vector ht−1 with
the glimpse vector gt (which is obtained from the input patch
vector xt at location lt) to compute ht:

ht = f4(ht−1 ‖ gt) = ReLU
(
W4 · (ht−1 ‖ gt) + b4

)
(5)

Model

ht-1

yt

xt

Model

ht

yt+1

xt+1

Model

ht+1

yt+2

xt+2

lt+1 lt+2lt

C
la

ss
 s

co
re

.

C
la

ss
 s

co
re

.

C
la

ss
 s

co
re

.

hidden state
vector

location
vector

class scores
output vector

cropped input vector

Fig. 4. Improvement in confidence of keyword ’yes’ as more glimpses are
processed.

The glimpse vector gt combines information from the input
patch vector and the location vector via two stages of processing
involving three fully connected layers:

gt = f3(qt ‖ pt) = ReLU
(
W3 · (qt ‖ pt) + b3

)
(6)

where pt and qt are the processed input patch vector xt and
location vector lt respectively. They are computed as follows:

pt = f2(xt) = ReLU
(
W2 · xt + b2

)
(7)

qt = f1(lt) = ReLU
(
W1 · lt + b1

)
(8)

Given the updated hidden state vector ht, the KeyRAM
algorithm predicts both the up-to-date class probability scores
yt and the next location vector to process lt+1 as follows:

yt = f5(ht) = softmax
(
W5 · ht + b5

)
(9)

lt+1 = f6(ht) = hardtanh
(
W6 · ht + b6

)
(10)

After training, the class prediction of the KeyRAM algorithm
improves in confidence (class score) as more glimpses are
processed (Fig. 4). To do so, the location vectors produced over
time must correspond to locations in the input feature that are
highly informative. This dynamic nature of KeyRAM enables
a natural trade-off between complexity and accuracy, which is
translates to an energy/latency vs. accuracy trade-off, where the
number of glimpses per decision nG acts as a tuning knob. In
order to train the KeyRAM algorithm, we use the same hybrid
supervised loss function from [11], which formulates RAM as
a reinforcement learning problem, with the location network
acting as an agent whose loss function is based on a reward,
whereas the rest of the layers are learned using the standard
cross-entropy loss function.

B. Enabling Accuracy-Energy Scalability

The decision accuracy of the KeyRAM algorithm is pro-
portional to the class confidence level or the class score,
which increases with the number of glimpses nG and hence
the energy cost. We introduce a confidence-based computation

4

MFCC Input Feature Patch Vector

extract & vectorize

Fig. 5. The patch extractor function φ used in KeyRAM.

(CC) strategy to provide a seamless trade-off between accuracy
and energy. At each glimpse t, let ct ∈ [M] be the predicted
class label obtained from yt in (9) as follows:

ct = arg max
i∈[M]

{yi,t} (11)

and yct,t ∈ [0, 1] be its associated class score. For a specific
threshold τ ∈ [0, 1], the KeyRAM algorithm with the CC strat-
egy (KeyRAM-CC) terminates at glimpse t = nG if one of the
following conditions holds: ycnG

,nG
> τ or nG = NG, where

NG is the maximum number of glimpses allowed per decision,
i.e., nG ≤ NG. The choice of the confidence threshold τ can
be used to trade-off the decision accuracy w.r.t. complexity. A
small value of τ implies that the classifier isn’t confident about
its decision resulting in lower accuracy but also lower energy
consumption since decisions are obtained with smaller values
of nG. On the other hand, a large value of τ implies a higher
value of nG, i.e., more glimpses per decision, and hence better
accuracy at the expense of more energy consumption.

C. Enabling Audio Classification

To enable audio classification, we use Mel-frequency Cep-
stral Coefficient (MFCC) [26] features as KeyRAM inputs.
Since audio features exhibit only temporal invariance, we
propose a location vector lt that points to the time index of
the MFCC feature.

Figure 5 describes the input patch vector generation for a
given MFCC feature matrix X ∈ RK×T where K denotes
the number of Mel-features used and T is the number of time
samples. The location vector lt points to a time index, and
a rectangular patch of size K × P is extracted accordingly.
The input patch vector xt ∈ RPK is therefore obtained by
vectorizing the rectangular patch. This process can be described
using the patch extractor function φ:

xt = φ(X, P, lt) (12)

The wider the patch (higher P), the more information is
contained in xt, and more processing required per glimpse.
Note that for 2D images, the location vector lt would be two
dimensional, where each entry corresponds to a separate image

TABLE I
LAYER DIMENSIONS AND ACTIVATION FUNCTIONS FOR THE KEYRAM

ALGORITHM. VALUES IN BOLD ARE USED IN THE KEYRAM IC.

Layer din dout σ

f1 2 dl (63) ReLU
f2 K × P (8 × 8) dx (64) ReLU
f3 dx + dl (64 + 63) dg (127) ReLU
f4 dg + dh (127 + 127) dh (127) ReLU
f5 dh (127) M (2-to-10) softmax
f6 dh (127) 2 hardtanh

axis. However, for KWS, we are only interested in one axis,
and therefore lt becomes a scalar lt.

Table I details both the activation functions as well as the
shapes of the 6 fully connected layers as a function of: dl the
dimension of qt; dx the dimension of pt; dg the dimension of
gt; and dh the dimension of ht, for using KeyRAM with M
keywords, K Mel-features, and a patch of width P .

D. Performance of KeyRAM

To benchmark the effectiveness of the KeyRAM algorithm,
we use the recent Google Speech [8] dataset. We compare
KeyRAM against several classical neural network architectures
for KWS reported in [2]. Similar to [2], we use 12 keywords
(including ’silence’ and ’unknown’ labels) from the Google
Speech dataset. Figure 6(a) plots the performance, in terms of
classification accuracy, of different network architectures and
KeyRAM vs. number of floating-point operations required for
a single inference. The complexity of the KeyRAM is varied by
changing the number of glimpses and the model size. KeyRAM
reduces the number of operations required for inference by
∼ 2.5× compared to state-of-the-art neural network-based
algorithms from [2] at iso-accuracy. For the same number of
operations, KeyRAM is able to achieve a ∼ 5.6% improvement
in the classification accuracy as well. Figure 6(b) shows that
KeyRAM remains competitive in terms of storage, which is
reflected in the number of model parameters required.

IV. IMPLEMENTATION

This section describes the architecture of the KeyRAM
prototype IC in 65 nm CMOS.

of Ops

te
st

 a
cc

u
ra

cy
 [

%
] KeyRAM

2.5

5.6%

(a)

of Ops

o

f
p

ar
am

et
e

rs

KeyRAM

(b)

Fig. 6. The accuracy-complexity-storage requirements of KeyRAM compared
to other neural network classification algorithms for the 12-class Google Speech
dataset [8]: (a) test accuracy, and (b) number of parameters vs. number of
operations.

5

Σ

CTRL

In
st

. R
eg

.

Se
tu

p
 R

eg
.

ADC CTRL

64b R/W Buffer64b R/W Buffer

X
-D

e
c. &

 P
u

lse G
en

.
X

-D
e

c. &
 P

u
lse G

en
.X

-D
ec

. &
 P

ul
se

 G
en

.
X

-D
ec

. &
 P

ul
se

 G
en

.

512 × 256
6T-SRAM BCA

× × × ×

PRECH & L:1 MUX

Sense Amplifier

64b R/W Buffer64b R/W Buffer

X
-D

e
c. &

 P
u

lse G
en

.
X

-D
e

c. &
 P

u
lse G

en
.X

-D
ec

. &
 P

ul
se

 G
en

.
X

-D
ec

. &
 P

ul
se

 G
en

.

512 × 256
6T-SRAM BCA

× × × ×

PRECH & L:1 MUX

Sense Amplifier

ADC
Bank

ADC0ADC0
ADC1ADC1

ADC2ADC2
ADC3ADC3

ADC0
ADC1

ADC2
ADC3

ADC
Bank

ADC0
ADC1

ADC2
ADC3

4b – 128 word input buffer 4b – 128 word input buffer 4b – 256 word input buffer 4b – 256 word input buffer

8b – 64 word input buffer

8b8b 8b8b

8b – 64 word weight buffer

8b8b

25
b

 A
cc

.

8b – 64 word input buffer

8b 8b

8b – 64 word weight buffer

8b

25
b

 A
cc

.

 IO Buffers

Setup Reg.

MVM CTRL

IMC Interface

IMC0 (fc3) IMC1 (fc4)

DM2VM (fc1,fc2,fc5,fc6)

6T SRAM
96 × 512

 Add. Reg. Data Reg. Add. Reg. Data Reg.

PE Units

Σ

Fig. 7. The KeyRAM IC architecture.

A. Architectural Mapping

The main challenges in implementing the KeyRAM algo-
rithm using an IMC-based architecture are threefold: 1) the
irregular layer shapes in KeyRAM makes it difficult to map onto
IMC architectures, where the support for arbitrary length dot
products (DPs) is limited; 2) the sparsity of the input activations
present a challenge for any IMC implementation employing a
charge sharing summation scheme, such as that of [13]; and 3)
the precision requirements for different layers vary. In fact it is
quite common in DNN quantization [27]–[30] to allocate higher
bit-widths for the first and last layers. This presents an issue for
IMC architectures, as they are typically meant for low-precision
operations, due to the inherent non-idealities associated with
mixed-signal computing.

However, we find via precision analysis, that KeyRAM’s
early (f1 and f2) and final (f5 and f6) layers require 8b
precision, whereas the intermediate layers f3 and f4 require
4b precision (both weights and activations) in order to maintain
accuracy. Furthermore, Table II indicates that our design choice
of 8b for f1/f2/f5/f6 and 4b for f3/f4 achieves an accuracy
within 0.2% of that of an 8b baseline whereas a fully 4b
KeyRAM algorithm would suffer from an accuracy loss of
∼ 3% compared to the 8b baseline thereby indicating that
extreme quantization, e.g., binarization, is not an option.

The parameters values of the KeyRAM architecture chosen
for IC implementation are detailed in Table I. The number of
operations of the resultant network architecture is dominated

TABLE II
ACCURACY OF THE KEYRAM ALGORITHM FOR THE 7-CLASS GOOGLE

SPEECH DATASET VS. DIFFERENT PRECISION PROFILES USING 4 GLIMPSES.
TRAINING SETUP AND DETAILS ARE PROVIDED IN SECTION V-A.

Layer Precision Assignment
f1 f2 f3 f4 f5 f6 Accuracy [%]

8b 8b 8b 8b 8b 8b 91.42
4b 4b 4b 4b 4b 4b 88.16
8b 8b 4b 4b 8b 8b 91.25

1120

2096

6348

6348

2288

DIG (f1)

DIG (f2)

IMC0 (f3)

IMC1 (f4)

DIG
(f5&f6)

Processing of one glimpse

Fig. 8. Timing diagram of the KeyRAM IC.

(89.2%) by the internal layers f3 and f4. Both layers require
127 dot-products to be computed, of length 128 and 255
respectively (bias addition is realized by augmenting the input
vector by 1). Fortunately, these require 4b operations. Thus, an
IMC is well-suited for implementing f3 and f4. The remaining
layers f1, f2, f5, and f6 (10.8% of the total complexity) are
computed in 8b precision digital using a novel and optimized
dataflow. Layers f5 and f6 are fused together and implemented
using a single matrix-vector multiply (MVM) routine, since
they share the same input vector ht.

B. Architecture and Timing

The KeyRAM architecture (Fig. 7) processes a single glimpse
using 5 operating modes (Fig. 8) without the need for off-chip
data transfer since all weights are stored on-chip. Internal vector
buffers are utilized to transfer data between operating modes.
These buffers allow us to swap the output of one stage into the
input of the next stage without stalling.

The architecture comprises of: 1) two IMC blocks (IMC0
and IMC1) to implement multi-bit MVMs via temporal folding
into a sequence of dot products. The IMC block is based on
the single-bank IMC architecture in [13] which implements a
single multi-bit dot-product per read cycle. Each IMC block in
KeyRAM consists of a standard 6T SRAM 512× 256 bit-cell
array (BCA) with per-column multipliers and a cross-column
adder. The two IMC blocks share four 6-b ADCs and implement
f3 and f4 respectively; 2) a diagonal major MVM kernel
(DM2VM) to efficiently implement f1, f2, f5 and f6 in digital;
and 3) a digital control block (CTRL) for timing synchroniza-
tion. The CTRL block is synchronized with a 1 GHz main clock
generated off-chip. The 1 GHz frequency was chosen primarily
for design simplicity, i.e., to be able to employ a synchronous
IMC architecture and be able to generate 1 ns pulses required
for execution of its various stages of computation. Note that,
as established in Section I, the infrequent nature of speech
related events implies that the 1 GHz clock can be gated during
the long and frequent inactivity periods of the KWS IC. All
internal clocks are generated from the main clock. The IC can
be configured to perform 2–to–10 way classification.

C. IMC Block

The proposed multi-bit IMC architecture (Fig. 9) has two
modes of operations: 1) a regular SRAM R/W mode and 2)
a DP mode in which it can implement sparse dot-products
between a buffered input vector and the weights stored in
the BCA as described in Section II. The BCA employs a

6

… …

…
…

…

…
BL
discharge

WL pulses IMC bit-cell array

Weight
vector

Input buffer

Sparsity aware
summation

…

…

(a)

𝜙1

𝜙2

si

𝜙3,i

𝜙3,i

𝜙2

si
𝜙3,i

𝜙2

si

C

𝜙1

𝜙3,1

C

𝜙1

𝜙3,256

to ADC

Sparsity-aware summation

(b)

Fig. 9. The multi-bit IMC bank: (a) architecture, and the (b) sparsity-aware
summation scheme.

standard 6T SRAM bitcell designed with logic rules occupying
1.93µm2. In the DP mode, the IMC can access four (Bw = 4)
consecutive rows simultaneously via the WL drivers. The
resultant voltage drop on each bitline (∆VBL) is proportional
to the 4b digital weight stored in that column. By tuning both
the wordline voltage VWL and the minimum pulse width T0, we
can control the maximum bitline discharge voltage ∆VBL-max.
In this work, we fix T0 = 250 ps, and vary VWL between 0.5 V
and 0.8 V, which translates to a maximum bitline discharge
voltage between 0.32 V and 0.54 V. The energy consumption
of the IMC is a strong function of ∆VBL-max and thus VWL. A
small ∆VBL-max implies more energy efficiency, at the expense
of compute accuracy, as demonstrated in [14]. The presence of
PVT variations prohibits the use of extremely small ∆VBL-max
values, and thus the value of VWL must to be chosen with
care. In this work we find that a VWL = 0.7 V is sufficient
for maintaining proper operation.

The IMC can realize dot-products between signed weights
and unsigned inputs. In each column, the sign of the weight
is computed by comparing the BL and BLB voltages, and the
absolute value of the weight (∆VBL-abs = min(∆VBL,∆VBLB))
is multiplied with the corresponding digital input via a column
pitch-matched charge re-distribution-based multiplier (similar
to that of [14]). The IMC requires two separate voltage sharing
rails that compute the partial dot-products using the positive
weights and the negative weights separately. Therefore, at the
end of each DP operation, two output voltages Vp and Vn need
to be sampled and converted to digital. This is done via two
separate ADCs, one for each rail voltage. The IMC design can
be easily modified to support signed inputs by computing the
partial product sign instead of the weight sign via a simple
XOR gate between the weight sign and the input sign signals
in each column. The partial product sign can be used to decide
which voltage sharing rail to use, and thereby realize a fully
signed DP operation efficiently.

In order for the ADC delay not to bottleneck the DP
operation, we ping-pong between two pairs of ADCs in every
read cycle. The CTRL block sequences the DP operations in
order to realize the full MVM. Figure 10 details the timing

 DP 5 DP M+1

27

 DP 0 DP 2 DP 4 DP M

IMC 0/1

ADC 0-1

ADC 2-3

38

38

 DP 1 DP 3

Fig. 10. Timing diagram for realizing an MVM on the IMC.

information in terms of number of cycles required by each
stage in the DP operation, and the ping-pong ADC schedule.
The ADC outputs are scaled and shifted to calibrate for offsets
followed by a ReLU non-linearity, and are subsequently routed
to the input buffers.

The support for input-sparse dot-products is crucial for
proper operation while realizing neural networks. This is due
to the use of the ReLU activation function, which increases the
input activations sparsity to ∼ 50%−70%. Sparse input vectors
present a challenge for the charge sharing summation scheme
used in [13] as the multiplier output voltage spread shrinks. A
sparsity-aware summing (SAS) method (Fig. 9(b)) is proposed
in which the per-column multiplier output voltages (Vm,i) are
selectively charge shared based on whether the corresponding
input element is zero or not. Th SAS scheme operates in two
stages and is synchronized by the CTRL block via the control
signals φ1 and φ2. When φ1 switches, all Vm,i’s are dumped
onto per-column unit capacitors. Next, φ2 switches to trigger
the summation process. In every column, signal φ3,i is derived
from φ2 to select whether or not Vm,i should be dumped onto
the charge sharing rail. In the process, the output swing is
preserved thereby improving the ADC accuracy. In order for
this to work, the number of non-zero elements Nz in the N -
dimensional input vector must be known to properly scale the
post-ADC output. We compute Nz as the inputs are streamed
in thereby incurring minimal latency overhead.

The effectiveness of the proposed SAS scheme is validated
via numerical simulations. Ideally, we would like to compute
the DP:

y0 =

N∑
i=1

xiwi (13)

where xi ∈ {0, ..., 1 − 2−4} and wi ∈ {−(1 − 2−3), ..., 1 −
2−3} are the quantized inputs (unsigned) and weights (signed),
respectively. The charge sharing summation is equivalent to an
averaging operation, which results in the following computation
of the DP:

y1 = N ·Q
(1

N

N∑
i=1

xiwi

)
(14)

where Q(.) is the By-bit ADC quantization function. In the
presence of the SAS scheme, the averaging occurs over the
non-zero partial products, which can be expressed as:

y2 = Nz ·Q
(1

Nz

N∑
i=1

xiwi

)
(15)

7

input sparsity [%]

d
o

t
p

ro
d

u
ct

 S
N

R
 [

d
B

]

10.3 dB

typical
sparsity
range

Fig. 11. The DP SNRs with and without the proposed SAS scheme vs. the
input sparsity, using: N = 128, Bx = Bw = 4 and By = 6.

The signal-to-noise ratio (SNR) between the ideal output y0
and the actual output yj (j ∈ {1, 2}) is defined as follows:

SNRj = 10 log10

(σ2
y0

σ2
(y0−yj)

)
(16)

Figure 11 plots SNR1 (without SAS) and SNR2 (with SAS)
against the input sparsity for randomly sampled weights and
inputs. As expected, when the inputs are not very sparse (<
20%), the impact of SAS is negligible. However, for the typical
input sparsity range observed in KeyRAM, the SAS scheme
improves the DP SNR by 5 dB-to-10 dB.

D. DM2VM Block

The DM2VM block is a synthesized digital co-processor
operating using a 500 MHz clock consisting of: 1) a 96× 512
standard 6T SRAM for parameter storage; 2) an array of
64 processing elements (PEs), each implementing an 8b×8b
multiply-accumulate (MAC) operation; 3) a local controller to
manage the SRAM R/W functionality, synchronize operations
with the main clock and manage data buffers. The block
digitally computes all MVM operations in f1, f2, f5 and f6 with
8b inputs and 8b weights using three operating modes (f5 and
f6 are fused together). The MVM dot-products are computed
via the PE array, with weights fetched from the SRAM and
inputs streamed in from a dedicated buffer. The 25-b accumu-
lated dot-product outputs are truncated to 8b per algorithmic
requirements. The DM2VM processor is designed to minimize
idle cycles when inputs/outputs are streamed in/out since the
diagonal major architecture is able to complete an N×M MVM
in a fixed number N + M of cycles irrespective of whether
N > M or vice-versa. In contrast, an input (output) stationary
architecture requires between 2N +M (N + 2M) and N +M
cycles, respectively, based on whether the input/output/both are
streamed or not.

Figure 12 illustrates the principle of the DM2VM kernel for
a 4× 4 FC layer. During the setup phase, the weight matrix is
stored in the SRAM in diagonal major format. The DM2VM
begins computation as soon as the first input is streamed in
and stops exactly when the final output is streamed out without
any stalls. Each PE cycle consists of 8 clock cycles, involving

weight matrix
diagonal major

storage

weight diagonal buffer

input buffer

output buffer

inputs streamed
in till cycle 3

weight diagonals streamed
in twice: cycles 0-3 & 4-7

outputs streamed out
on cycles 4-7

D

cycles/MVM
(for matrix)

input
stationary

inputs/outputs streamed
inputs streamed
outputs streamed

output
stationary

diagonal
major

Fig. 12. The principle of the DM2VM block for a 4× 4 FC layer.

1.
78

 m
m

2.32 mm

BCABCA

R/W circuitryR/W circuitry

C
T
R
L

ADC IMC circuitryIMC circuitry

Digital DM2VM Processor
SRAM

Technology 65nm

Die Size 1.78mm 2.32 mm

Memory
Capacity

38kB

Nominal
Supply

1.0V

CTRL
Frequency

1GHz

Latency 39.9μs

Energy/dec 0.44μJ

Algorithm RAM

Fig. 13. Die micrograph and chip summary.

fetching one weight diagonal from the SRAM and computing
the partial sums using the shifted inputs. Once all the inputs are
shifted in, the shift register flips direction and starts streaming
out the completed output sums. The bias vector is pre-fetched
in a dedicated buffer, and each element is added to the final
output term once its streamed out. This makes the DM2VM
well-matched to the diverse set of MVM dimensions utilized
by the KeyRAM algorithm.

V. EXPERIMENTAL RESULTS

This section describes the measured results from the proto-
type IC, and compares its performance with existing KWS ICs.
The 65 nm CMOS IC is packaged in a 100-pin QFN. Figure 13
shows the die micrograph of the 65nm CMOS IC along with
its summary.

A. Setup

Measurements on the IC are performed using the Google
Speech dataset [8]. The KeyRAM architecture from Section IV
was trained for 7-way classification using 11 k data samples
each corresponding to a 1 s keyword sampled at 16 kHz. The
inputs to the classifier on the chip are 8-channel MFCCs
extracted within 40 ms windows with 20 ms overlap resulting
in a 8× 49-dimensional feature vector (K = 8, T = 49). The
input patch dimension at each glimpse is 8 × 8 (P = 8) and
the locator is a one-dimensional scalar. Figure 14 shows the

8

PC (Python)

Raw samples MFCC (inputs)

MCU

Google Speech
Dataset Feature

extraction

MCU
interface

KeyRAM IC

WL voltage

Fig. 14. Measurement setup showing data transfer between the PC to the
KeyRAM IC via a microcontroller (MCU).

TABLE III
MEASURED CLASSIFIER ACCURACY ACROSS GLIMPSES.

Glimpses (nG) 1 2 3 4
Accuracy [%] 60.58 72.12 83.65 90.38

measurement setup used for testing the KWS IC. MFCC feature
extraction of raw audio samples from the Google Speech dataset
is performed on the PC. The microcontroller (MCU) transfers
the MFCC glimpses from the PC to the IC, and the location and
class scores from the IC to the PC. All KeyRAM parameters
are stored on-chip. The total I/O requirements is 3.4 Mbps when
operating at maximum throughput.

B. Decision Accuracy, Energy, and Latency

Figure 15 shows how the confidence of the classifier IC
improves with the number of glimpses processed when the
input sample corresponds to the label ’off’. After two glimpses,
the IC is unable to recognize the correct label, but with low
confidence. By processing an extra glimpse, the IC makes the
correct decision by assigning the label ’off’ to the sample, and
it does so with high confidence. Table III indicates that the
measured classification accuracy of KeyRAM improves with
the number of glimpses nG used per decision. Processing more
glimpses makes the classifier more confident in its decisions,
and hence improves its accuracy. When averaged over the
test set, the measured classification accuracy is 90.38% at
VWL = 0.7 V with nG = 4 glimpses.

The decision energy and latency linearly increase with nG
(Fig. 16). Combined with a tunable WL pulse amplitude VWL,

co
n

fi
d

e
n

ce

glimpses ()

correct decision

Fig. 15. Measured classifier confidence across glimpses for one input sample
when the true class label is ’off’, using VWL = 0.7V.

e
n

e
rg

y/
d

e
c

[
J]

th
ro

u
gh

p
u

t
[k

 d
e

c/
s]

number of glimpses ()

Fig. 16. Measured decision throughput and energy for varying VWL and the
number of glimpses nG showing KeyRAM’s dynamic energy-throughput trade-
off.

the KeyRAM IC incorporates dynamic energy-accuracy trade-
offs, e.g., the energy/glimpse varies from 0.19µJ-to-0.21µJ as
VWL varies from 0.5 V-to-0.8 V. The measured energy break-
down (Fig. 17) shows that layers f3 and f4, which account
for 89% of computations, consume 68% of the total energy
consumption. These savings are attributed to the use of IMC.
The CTRL energy (0.08µJ/glimpse) gets amortized as the
problem increases.

C. KeyRAM with CC Strategy

In Fig. 15, we notice that the classifier need not process
the 4th glimpse as the confidence after the 3rd glimpse was
very high. This provides some evidence that the CC strategy
presented in Section III can be useful to minimize the energy.
In this section, we investigate the efficacy of using this strategy.

Figure 18 plots the measured classification error and average
energy per decision of KeyRAM with CC (KeyRAM-CC) while
varying the threshold parameter τ . The accuracy-energy trade-
off is evident, as the average energy per-decision increases with
τ , for more glimpses per input sample nG are required on
average, while the classification error generally decreases. For
τ ≥ 0.5, the test error plateaus around 9.62%, which is the test
error associated with a constant glimpse strategy (nG = NG)

Fig. 17. Measured energy breakdown of the KeyRAM IC at VWL = 0.7V
and nG = 4.

9

TABLE IV
COMPARISON TABLE.

[3] [4] [5] [6] [7] This Work
Technology 65 nm 65 nm 65 nm 65 nm 28 nm 65 nm
Algorithm DNN LSTM LSTM Binarized-RNN DSCNN RAM
Dataset TIDIGITS TIMIT TIMIT Google Speech Google Speech Google Speech
of Classes 11 39 4a 10 2 7
Test Accuracy [%] 98.35 80.4 − 90.2 94.6 90.38
On-chip Storage [kB] 747.52 82 32 18 2 38
Area [mm2] 9.61 1.57 1.035 6.2 0.23 4.13
Energy/Decision [µJ] 6.4c 9.54c 0.06 3.36 0.03c 0.44

Decision Latency [µs] 37000c 770c 12000c 130 64000b 39.9
of MACs/Decision − − 5.8 k − 27.2 k − 151.4 k 200 k
of Parameters − − − − 2.18 k 91 k
Energy-Delay Product [pJ.s] 239 kc 7.3 kc 720 430 1.92 kc 17.56
Supply Voltage [V] 0.6− 1.2 0.75− 1.24 0.575 0.9− 1.1 0.41 1
Energy Efficiency [TOPS/W] − 3.08 − 11.7 − 0.91
a4 binary classifiers bincludes MFCC calculation cestimated from reported data

with nG = 4. Therefore, KeyRAM-CC achieves an accuracy
equal to that achieved by the constant glimpse strategy while
consuming ∼ 2× less energy per decision on average.

Comparison with a digital architecture implementing a stan-
dard RNN with the same model size, Figure 19 shows a 4.1×
savings in decision energy of which approximately 1.48× is
attributed to the use of the KeyRAM algorithm using constant
glimpse strategy with nG = 4 and 2.74× is due to IMC. An
additional 1.81× savings is achieved on average by employing
the CC strategy (τ = 0.5) for a total of 7.3× savings in decision
energy.

D. Comparison with Existing KWS ICs

Table IV compares the KeyRAM IC with state-of-the-art
digital [3]–[5], [7] and in-memory [6] KWS IC implementa-
tions. Table IV shows that the proposed KeyRAM IC requires
more MACs per classification compared to current KWS ICs
in [5], [7]. The reason being that the KeyRAM IC processes a
higher number of keywords (7) on a more challenging Google
speech dataset as compared to [5] which considers 4 keywords
from the simpler TIMIT dataset, and [7] which processes
only 2 keywords from the Google speech dataset. KeyRAM,

av
e

ra
ge

 e
n

e
rg

y/
d

ec
[

J]

e
rr

o
r

[%
]

threshold ()

1.8

Fig. 18. Measured classification error and average energy per decision of
KeyRAM-CC for different threshold values, using VWL = 0.7V.

digital
RNN*

*estimated from DM2VM measurements

e
n

e
rg

y/
d

ec
[

J]

Key
RAM

digital
RAM*

1.48 RAM

2.74 IMC

Key
RAM-CC

1.81 CC0.44

Fig. 19. Energy savings of KeyRAM compared to an all-digital implementation
of RAM and RNN at iso-model size, with nG = 4 and VWL = 0.7V.

using the CC strategy with τ = 0.5, achieves 7.6× reduction
in energy/decision compared to the IMC [6]. In addition,
KeyRAM achieves > 24× reduction in the decision energy-
delay product (EDP) compared to other KWS implementations.
It also achieves the lowest reported decision latency of 39.9µs.

VI. CONCLUSION

This paper illustrates the importance of algorithm-hardware
co-design approach in minimizing the energy consumption and
latency of decision-making systems in silicon. Specifically,
adapting the RAM algorithm [11] from image classification
to the KWS task provided ∼ 2× reduction in energy-per-
decision with no loss in accuracy and enabled on-chip storage
of all weights. Combined with selective mapping of RAM
layers to IMC [13] enabled this KWS IC to achieve a total
of > 24× reduction in the decision-level EDP over SOTA.
Such algorithm-hardware co-design approaches will be critical
in other applications such as video inference as circuit and
system designers seek to pervasively deploy AI-enabled semi-
conductors.

ACKNOWLEDGMENT

This work was sponsored by the AFRL and DARPA under
agreement FA8650-18-2-7866 as part of the FRANC program
and a grant from Sandia National Laboratories.

10

REFERENCES

[1] I. McGraw, R. Prabhavalkar, R. Alvarez, M. G. Arenas, K. Rao, D. Ry-
bach, O. Alsharif, H. Sak, A. Gruenstein, F. Beaufays et al., “Personalized
speech recognition on mobile devices,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 5955–
5959. 1

[2] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword spotting
on microcontrollers,” arXiv preprint arXiv:1711.07128, 2017. 1, 4

[3] M. Price, J. Glass, and A. P. Chandrakasan, “A scalable speech recognizer
with deep-neural-network acoustic models and voice-activated power
gating,” in IEEE International Solid-State Circuits Conference (ISSCC),
2017, pp. 244–245. 1, 9

[4] F. Conti, L. Cavigelli, G. Paulin, I. Susmelj, and L. Benini, “Chipmunk:
A systolically scalable 0.9 mm 2, 3.08 GOP/s/mW@ 1.2 mW accelerator
for near-sensor recurrent neural network inference,” in IEEE Custom
Integrated Circuits Conference (CICC), 2018, pp. 1–4. 1, 9

[5] J. S. Giraldo and M. Verhelst, “Laika: A 5uW programmable LSTM
accelerator for always-on keyword spotting in 65nm CMOS,” in IEEE
44th European Solid State Circuits Conference (ESSCIRC), 2018, pp.
166–169. 1, 9

[6] R. Guo, Y. Liu, S. Zheng, S.-Y. Wu, P. Ouyang, W.-S. Khwa, X. Chen,
J.-J. Chen, X. Li, L. Liu et al., “A 5.1 pJ/neuron 127.3 us/inference
RNN-based speech recognition processor using 16 computing-in-memory
SRAM macros in 65nm CMOS,” in Symposium on VLSI Circuits. IEEE,
2019, pp. C120–C121. 1, 9

[7] W. Shan, M. Yang, J. Xu, Y. Lu, S. Zhang, T. Wang, J. Yang, L. Shi, and
M. Seok, “14.1 a 510nw 0.41 v low-memory low-computation keyword-
spotting chip using serial FFT-based MFCC and binarized depthwise
separable convolutional neural network in 28nm CMOS,” in 2020 IEEE
International Solid-State Circuits Conference-(ISSCC). IEEE, 2020, pp.
230–232. 1, 9

[8] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018. 1, 4, 7

[9] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017. 1

[10] S. Oh, M. Cho, Z. Shi, J. Lim, Y. Kim, S. Jeong, Y. Chen, R. Rothe,
D. Blaauw, H.-S. Kim et al., “An acoustic signal processing chip with
142-nw voice activity detection using mixer-based sequential frequency
scanning and neural network classification,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 11, pp. 3005–3016, 2019. 1

[11] V. Mnih, N. Heess, A. Graves et al., “Recurrent models of visual
attention,” in Advances in Neural Information Processing Systems, 2014,
pp. 2204–2212. 2, 3, 9

[12] H. Dbouk, S. K. Gonugondla, C. Sakr, and N. R. Shanbhag, “KeyRAM:
A 0.34 uJ/decision 18 k decisions/s recurrent attention in-memory pro-
cessor for keyword spotting,” in 2020 IEEE Custom Integrated Circuits
Conference (CICC). IEEE, 2020, pp. 1–4. 2

[13] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A multi-
functional in-memory inference processor using a standard 6T SRAM
array,” IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 642–655,
2018. 2, 5, 6, 9

[14] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-tolerant in-
memory machine learning classifier via on-chip training,” IEEE Journal
of Solid-State Circuits, vol. 53, no. 11, pp. 3163–3173, 2018. 2, 6

[15] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a machine-
learning classifier in a standard 6T SRAM array,” IEEE Journal of Solid-
State Circuits, vol. 52, no. 4, pp. 915–924, 2017. 2

[16] M. Kang, S. K. Gonugondla, S. Lim, and N. R. Shanbhag, “A 19.4-
nj/decision, 364-k decisions/s, in-memory random forest multi-class in-
ference accelerator,” IEEE Journal of Solid-State Circuits, vol. 53, no. 7,
pp. 2126–2135, 2018. 2

[17] A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE Journal of Solid-State Circuits, vol. 54,
no. 1, pp. 217–230, 2018. 2

[18] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-Mb in-
memory-computing cnn accelerator employing charge-domain compute,”
IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789–1799, 2019.
2

[19] J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-N. Tu, R. Liu,
T.-W. Lu, Pei-Jungand Liu, J.-H. Wang, Z. Zhang, H. Jiang, S. Huang, C.-
C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, S.-S. Sheu, S.-H. Li, H.-Y. Lee,
S.-C. Chang, S. Yu, and M.-F. Chang, “A 28nm 64Kb inference-training
two-way transpose multibit 6T SRAM compute-in-memory macro for
AI edge chips,” in IEEE International Solid-State Circuits Conference
(ISSCC), 2020, pp. 240–241. 2

[20] J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F.
Chang, X. Li, H. Yang, and Y. Liu, “A 65nm computing-in-memory-based
CNN processor with 2.9-to-35.8TOPS/W system energy efficiency using
dynamic-sparsity performance-scaling architecture and energy-efficient
inter/intra-macro data reuse,” in IEEE International Solid-State Circuits
Conference (ISSCC), 2020, pp. 234–235. 2

[21] Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao,
Y. Wang, and J. Chang, “A 351 TOPS/W and 372.4 GOPS compute-in-
memory SRAM macro in 7nm FinFET CMOS for machine learning appli-
cations,” in IEEE International Solid-State Circuits Conference (ISSCC),
2020, pp. 242–243. 2

[22] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-W. Liu,
S.-Y. Wu, R. Liu, Y.-C. Chou, Z. Zhang, S.-H. Sie, W.-C. Wei, Y.-C.
Lo, T.-H. Wen, T.-H. Hsu, Y.-K. Chen, W. Shih, C.-C. Lo, R.-S. Liu,
C.-C. Hsieh, K.-T. Tang, N.-C. Lien, W.-C. Shih, Y. He, Q. Li, and M.-F.
Chang, “A 28nm 64Kb 6T SRAM computing-in- memory macro with
8b MAC operation for AI edge chips,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2020, pp. 246–247. 2

[23] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via deep
embedding of computation in SRAM,” in 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2014, pp. 8326–8330. 2

[24] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, and S. Khudanpur,
“Recurrent neural network based language model,” in Eleventh annual
conference of the international speech communication association, 2010.
2

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986. 3

[26] P. Mermelstein, “Distance measures for speech recognition, psychological
and instrumental,” Pattern recognition and artificial intelligence, vol. 116,
pp. 374–388, 1976. 4

[27] C. Sakr and N. Shanbhag, “An analytical method to determine minimum
per-layer precision of deep neural networks,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 1090–1094. 5

[28] C. Sakr and N. R. Shanbhag, “Per-tensor fixed-point quantization of the
back-propagation algorithm,” in 7th International Conference on Learning
Representations, ICLR 2019, 2019. 5

[29] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European conference on computer vision. Springer, 2016, pp. 525–542.
5

[30] D. Zhang, J. Yang, D. Ye, and G. Hua, “Lq-nets: Learned quantization for
highly accurate and compact deep neural networks,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 365–382. 5

11

Hassan Dbouk received the B.E. degree with High
Distinction in 2017 from the Department of Elec-
trical and Computer Engineering at the American
University of Beirut, Lebanon. He received his M.S.
degree in 2019 from the Department of Electrical and
Computer Engineering at the University of Illinois at
Urbana-Champaign, where he is currently pursuing
his Ph.D. degree. His research interests lie at the
intersection of machine learning, circuits, and com-
puter architecture. He is the recipient of the Rambus
fellowship from the ECE department at the University

of Illinois in 2020-2021.

Sujan K. Gonugondla received the Bachelor’s and
Master’s in Technology degrees in Electrical En-
gineering from the Indian Institute of Technology
Madras, Chennai, India, in 2014 and the Ph.D. degree
in Electrical and Computer Engineering from the
University of Illinois at Urbana-Champaign, Urbana,
IL, USA in 2020. Since June 2020, he has been with
Amazon, where he works as a Research Scientist.
His research interests are in energy-efficient integrated
circuits, and low complexity algorithms for machine
learning systems, specifically algorithm hardware co-

design for inference under resource-constraints.
Sujan K. Gonugondla is a recipient of the Dr. Ok Kyun Kim Fellowship 2018-
19 and the M. E. Van Valkenburg Graduate Research Award 2019-20 from
the ECE department at the University of Illinois at Urbana-Champaign, the
ADI Outstanding Student Designer Award 2018 and the SSCS Predoctoral
Achievement award in 2020. He has received Best Student Paper Awards in
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
in 2016, and International conference in Circuits and Systems (ISCAS) in 2018.

Charbel Sakr is a PhD student at the University
of Illinois working with Professor Naresh Shanbhag
in the Coordinate Sciences Laboratory. He obtained
his Engineering degree from the American University
of Beirut in 2015 graduating with High Distinction.
He then joined the University of Illinois and ob-
tained his Masters degree in 2017 from the Electrical
and Computer Engineering Department where he is
now a PhD candidate. His research interests are in
resource-constrained machine learning, with a focus
on analysis and implementation of reduced precision

algorithms and models.

Naresh R. Shanbhag received his B.Tech. (Indian
Institute of Technology, New Delhi, 1988), M.S.
(Wright State University, 1990), and his Ph.D. de-
gree (University of Minnesota, 1993) all in Elec-
trical Engineering. From 1993 to 1995, he worked
at AT&T Bell Laboratories at Murray Hill where
he was the lead chip architect for AT&T’s 51.84
Mb/s transceiver chips over twisted-pair wiring for
Asynchronous Transfer Mode (ATM)-LAN and very
high-speed digital subscriber line (VDSL) chip-sets.
Since August 1995, he is with the Department of

Electrical and Computer Engineering, and the Coordinated Science Laboratory
at the University of Illinois at Urbana-Champaign, where he is presently a Jack
Kilby Professor of Electrical and Computer Engineering. He was a visiting
faculty at the National Taiwan University (August 2007-December 2007) and
Stanford University (August 2014-December 2014). His research interests are
in the design of robust and energy-efficient integrated circuits and systems
for communications including VLSI architectures for error-control coding, and
equalization, noise-tolerant integrated circuit design, error-resilient architectures
and systems, and system-assisted mixed-signal design. He has more than 200
publications in this area and holds twelve US patents. He is also a co-author of
the research monograph Pipelined Adaptive Digital Filters published by Kluwer
Academic Publishers in 1994.
Dr. Shanbhag received the 2010 Richard Newton GSRC Industrial Impact
Award, became an IEEE Fellow in 2006, received the 2006 IEEE Journal
of Solid-State Circuits Best Paper Award, the 2001 IEEE Transactions on
VLSI Best Paper Award, the 1999 IEEE Leon K. Kirchmayer Best Paper
Award, the 1999 Xerox Faculty Award, the Distinguished Lecturership from the
IEEE Circuits and Systems Society in 1997, the National Science Foundation
CAREER Award in 1996, and the 1994 Darlington Best Paper Award from the
IEEE Circuits and Systems Society. Dr. Shanbhag is serving as an Associate
Editor for the IEEE Journal on Exploratory Solid-State Computation Devices
and Circuits (2014-16), served as an Associate Editor for the IEEE Transaction
on Circuits and Systems: Part II (97-99) and the IEEE Transactions on VLSI
(99-02 and 09-11), respectively. He has served as the General Chair of the IEEE
Workshop on Signal Processing Systems (2013), and the IEEE International
Symposium on Low-Power Design (ISLPED 2012), the Technical Program co-
Chair of the 2010 ISLPED, and served on the technical program committee
of a number of conferences including the International Solid-State Circuits
Conference (ISSCC, 2007-11).
Dr. Shanbhag led the Alternative Computational Models in the Post-Si Era
research theme, in the DOD and Semiconductor Research Corporation (SRC)
sponsored Microelectronics Advanced Research Corporation (MARCO) center
under their Focus Center Research Program (FCRP) from 2006-12. Since
January 2013, he is the founding Director of the Systems On Nanoscale
Information fabriCs (SONIC) Center, a 5-year multi-university center funded
by DARPA and SRC under the STARnet phase of FCRP. In 2000, Dr. Shanbhag
co-founded and served as the Chief Technology Officer of Intersymbol Com-
munications, Inc., a venture-funded fabless semiconductor start-up that provides
DSP-enhanced mixed-signal ICs for electronic dispersion compensation of OC-
192 optical links. In 2007, Intersymbol Communications, Inc., was acquired by
Finisar Corporation, Inc..

