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Abstract—This paper presents an energy-efficient and high-
throughput architecture for Sparse Distributed Memory (SDM)
- a computational model of the human brain [1]. The pro-
posed SDM architecture is based on the recently proposed in-
memory computing kernel for machine learning applications
called Compute Memory (CM) [2], [3]. CM achieves energy and
throughput efficiencies by deeply embedding computation into
the memory array. SDM-specific techniques such as hierarchical
binary decision (HBD) are employed to reduce the delay and
energy further. The CM-based SDM (CM-SDM) is a mixed-
signal circuit, and hence circuit-aware behavioral, energy, and
delay models in a 65 nm CMOS process are developed in order
to predict system performance of SDM architectures in the auto-
and hetero-associative modes. The delay and energy models
indicate that CM-SDM, in general, can achieve up to 25× and
12× delay and energy reduction, respectively, over conventional
SDM. When classifying 16×16 binary images with high noise
levels (input bad pixel ratios: 15% ~ 25%) into nine classes, all
SDM architectures are able to generate output bad pixel ratios
(Bo) ≤ 2%. The CM-SDM exhibits negligible loss in accuracy,
i.e., its Bo degradation is within 0.4% as compared to that of
the conventional SDM.

Index Terms—Associative memory, brain-inspired comput-
ing, Compute Memory, Machine learning, Pattern recognition,
Sparse Distributed Memory

I. INTRODUCTION

Emerging applications require the processing of massive
data volumes generated by sensor-rich platforms such as
wearables, autonomous vehicles, robots, Internet-of-things,
and others. These applications require the implementation of
statistical signal processing, and machine learning kernels in
silicon in order to provide in-situ data analytics capabilities.
Such implementations need to be energy-efficient in order to
operate with energy constrained sources, in a limited form
factor, and with large data volumes. Therefore, there is much
interest in exploring brain-inspired models of computation
that can provide robust system behavior for inference appli-
cations while achieving high energy efficiency [4], [5], [6],
[7].

The Sparse Distributed Memory (SDM) [1] (see Fig. 1) is
one such computational model of the human brain. A SDM
can be trained to remember sparse data vectors and retrieve
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Fig. 1: Sparse distributed memory (SDM): (a) architecture
(SH : number of selected rows), and (b) example of SDM
operation with address decoder (AD) and counter array
(CA) (I = 8, J = K = 7, and SH = 3).

these when presented with noisy or incomplete versions of
the stored vectors. This is similar to human brain’s ability
to associate related memory given noisy sensory input by
conceptualizing/categorizing incomplete information [8].

Being a memory array, the SDM input is a 2-tuple (p,d),
where p and d are the J-bit address and K-bit data, re-
spectively (we assume J = K in the rest of this paper). In
a SDM, data vectors d are first stored (WRITE operation).
The address decoder (AD) projects the J-bit address vector
p on to a higher I-dimensional (I � J) space, and then uses
this high dimensional representation s of p as the decoded
address into the counter array (CA), where d is stored in
a distributed fashion. In the READ mode, the address p is
first decoded by the AD, and the decoded address s used
to retrieve the stored data from the CA. The sparse and
distributed nature of data processed and stored in a SDM
provides inherent robustness to noise or imprecision in the
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input data. The SDM can also be employed in an auto- or
hetero-associative mode to achieve even greater robustness to
data errors.

However, a straightforward SDM implementation will con-
sume much energy and will be slow because the SDM
operates in a high (hyper)-dimensional space [1], e.g., typical
SDM parameters are: I = 2× 103 to 106, J ≥ 256, Bc ≥ 5,
where Bc is a bit precision of each counter in the CA [8],
[9]. Such an implementation in a 65 nm CMOS process
would consume 77 uJ and have a delay of 2 ms per READ.
In fact, the dominant (about 80% as shown in Section V)
source of energy consumption and delay in the SDM can
be attributed to the AD. Hence, several high throughput
architectures for the AD based on SRAM and DRAM have
been proposed. These achieve speed-up by parallelizing the
AD using multiple memory blocks [10]. However, these ar-
chitectures suffer from an inter-block throughput bottleneck.
To remove memory read operation, a shift register-based
AD architecture [11] has also been proposed. However, this
architecture suffers from large dynamic energy consump-
tion and occupies large area as compared to memory-based
architectures. Mixed-signal AD implementations [11], [12]
employ a current mirror to evaluate the Hamming distances
in parallel thereby achieving high throughput. However, the
large content addressable memory bit-cell dimension (i.e.,
11 transistors including the current mirror) results in a loss
of storage density, and the bias currents results in high DC
power consumption. The design of SDM is also implemented
by employing resistive memory devices [9].

Implementing the SDM model requires large storage
capacity closely integrated with computation. Traditional
processor-memory architectures separate low-swing memory
storage functionality from high-swing logic. This separation
exists even in the so-called processor-in-memory architecture
[13], [14], and is the source of both a throughput bottleneck
and energy consumption. In fact, conventional architectures
fail to exploit an important feature of the SDM [8] - the
ability to compensate for hardware noise/errors in addition
to noise/errors in the input data.

Recently, we proposed Compute Memory (CM) [2], [3]
an in-memory computing architecture, where both compu-
tation and storage are implemented in a low swing/low
signal-to-noise ratio (SNR) domain thereby eliminating the
processor-memory interface completely, and providing a
5.0× energy reduction and 4.9× throughput enhancement
for pattern recognition application in a 45 nm CMOS pro-
cess. CM preserves the storage density, the conventional
SRAM’s read/write functionality, and is well-suited for infer-
ence kernels such as SDM which can compensate for non-
deterministic hardware operations.

In this paper, (preliminary results are in [15]), we de-
scribe an architecture and circuit implementation of a CM-
based SDM (CM-SDM), which incorporates two proposed
techniques 1) CM-based AD (CM-AD), and 2) CA with a
hierarchical binary decision (CA-HBD). Circuit and system
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Fig. 2: The conventional SDM: (a) a M -parallel block
architecture, and (b) architecture of a single block.

simulations in a 65 nm CMOS process show that the CM-
SDM reduces energy and delay simultaneously by a factor
of up to 25× and 12×, respectively, over the conventional
SDM architecture in the auto- and hetero-associative modes
with negligible loss in accuracy.

The rest of paper is organized as follows. Section II
provides the necessary background on SDM, CM, and as-
sociative memory. Section III describes the proposed CM-
AD and CA-HBD architectures. Section IV develops circuit-
aware energy, delay, and behavioral models for the entire
signal processing chain. Section V presents circuit and sys-
tem simulation results demonstrating the performance, delay
reduction, and energy savings of the architecture over the
conventional SDM.

II. BACKGROUND

This section introduces the necessary background on the
topics of SDM [1] and CM [2], [3].

A. Sparse Distributed Memory (SDM)

Figure 1 shows that the SDM accepts as input a 2-tuple
(p,d) with a J-bit address p and J-bit data d. The SDM
architecture (see Fig. 1(a)) includes: 1) a J-bit address
decoder AD to evaluate the Hamming distance between p
and the I , J-bit addresses stored in a I × J memory array
A in the AD, and 2) a counter array CA with a counter and
a memory array C to store the IJ Bc-bit counts.
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1) WRITE Operation: During the WRITE operation,
the AD generates an I-bit decoded row address s =
[s1,s2, . . . , sI ] (see Fig. 1), as follows:

si = sgn{R−
J∑

j=1

(aij ⊕ pj)}, (i = 1, 2, . . . , I) (1)

sgn(x) =

{
1, if x ≥ 0

0, otherwise

where ⊕ is the binary EXOR operator, ai =
[ai1, ai2, . . . , aiJ ] is the i-th address stored in A,
p = [p1, p2, . . . , pJ ] is the input address, and R is a
user-defined radius/threshold.

The decoded row address s and the data d are employed
in the CA to update the count, as follows:

cij ←

{
cij + si, if dj = 1

cij − si, otherwise
(2)

where d = [d1, d2, . . . , dJ ]. Note: that the contents of C are
updated only when si = 1, i.e., only the selected rows are
updated.

2) READ Operation: During the READ operation, AD
generates the row address s in the same manner as in the
WRITE operation described by (1). Then, the SDM output
is read out as:

yj = sgn(s · cj), (j = 1, 2, . . . , J) (3)

where cj is the j-th column vector of C, and y =
[y1, y2, . . . , yJ ] is the output word.

B. Associative Memory
In associative memories, the data read is the stored data

that is most strongly associated with the contents of the
input rather than a specific address. There are two types
of associative memories: 1) auto-associative memory, and 2)
hetero-associative memory. The SDM can operate in both
modes of associative recall and when it does, the SDM
exhibits even stronger robustness to noise/errors in data.

In the auto-associative mode, the SDM is trained by
selecting its input 2-tuple (p,d) from the training set St =
{(t1, t1), (t2, t2), . . .}, i.e., both the address p and the data
d are assigned the same value [16]. On the other hand,
in the hetero-associative mode, the SDM is trained by se-
lecting its input 2-tuple (p,d) from the training set St =
{(t11, t12), (t21, t22), . . .}, i.e., p and the d are assigned
different values.

During the classification/decision-making phase, in both
associative modes, the SDM is operated in an iterative
manner where initially p = l, where l is a noisy/incomplete
version of the stored data. Then, in subsequent iterations, p is
set to the current output of the SDM. Thus, the classification
phase of the SDM is described as follows:

p[n] =

{
l, if n = 1

y[n− 1], if n > 1
(4)

where n is the time index, and l is an initial input. The output
y[n] converges to an error-free/closest version of l that was
stored during the training phase. The SDM’s auto- and hetero
associative modes can be interpreted as human brain’s ability
to extract a pattern from noise and locate the next pattern in
a certain sequence given the current pattern [8].

C. Conventional SDM Architecture

The conventional SDM architecture is multi-block [10]
(see Fig. 2(a)) in order to enhance throughput. The
multi-block SDM architecture comprises M blocks (B1,
B2,. . .,BM ) that operate in parallel, where each block has
its own address decoder ADm with memory array Am of
size (I/M) × J bits, a counter array CAm with memory
array Cm of size (I/M) × (JBc) bits, and decoded row
address sm (m = 1, . . . ,M ). The memory array A in AD
is implemented via SRAMs for high throughput, while the
memory array C in CA is implemented using DRAM, Flash,
and PRAM, in order to achieve high storage densities.

The architecture of each block (see Fig. 2(b)) indicates
that ADm computes the Hamming distance between the
input address p and (I/M) stored addresses in Am, while
CAm generates a partial sum, which is then accumulated and
thresholded during the READ operation. The each partial sum
requires an additional Bx bits in addition to Bc bits per single
counter in order to prevent overflow, where Bx depends upon
the sparsity of stored data and R. Thus, the multi-block SDM
architecture requires J(Bc+Bx) global bit-lines (GBLs) per
block to transfer partial sums to the decision block.

The conventional architecture in Fig. 2(a) has a number of
drawbacks. Key among these are:

1) The Hamming distance computation in the ADm re-
quires access to all the memory locations. The through-
put of ADm is limited by the SRAM read out band-
width. In particular, multiple read out cycles are re-
quired to read a single ai in conventional memory and
processor architecture.
This is because conventional SRAMs need to employ
column multiplexing, whereby multiple bit-lines (BLs)
share a single sense amplifier (SA). Reliability con-
straints force the SA and other peripheral circuits to be
designed with area that is 4×-to-8× of that of a bit-
cell, thereby necessitating column multiplexing. Addi-
tionally, there is another throughput bottleneck due to
limited memory I/O port or bus width in von Neumann
architectures [18]. Typically, J/BIO ≥ 4 read outs are
required to read the entire data in single row even in
application processors with custom-designed on-chip
SRAM [17], where BIO is the bit width of the SRAM
I/O port or the bus width.

2) The additional digital blocks in the AD such as the
adder tree and EXOR gates lead to energy consumption
and area overhead.

3) Routing the GBLs in the CAm is made difficult
because of their large number (J(Bc +Bx) per block),
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and because of the small bit-cell area (4F 2, F : 1/2
of BL pitch) due to the use of high density memories
[19], [20].

Section III describes how these drawbacks of the conven-
tional architecture can be overcome.

D. Compute Memory (CM)

The recently proposed CM implements data processing
functionality of inference algorithms into the periphery of
the memory array, e.g., SRAM. The CM incorporates the
following features: 1) a multi-row read (MR-READ) process
where multiple rows are read per BL precharge, and 2) BL
analog signal processing (BL-ASP) that leverages the differ-
ential nature of the SRAM read-out circuitry to implement
simple operations such as sum of absolute differences, signed
multiplication, and others. CM achieves energy efficiency
and high throughput by implementing the bulk of process-
ing (both MR-READ and BL-ASP) in low-swing/low-SNR
domain and by eliminating the memory-processor interface
completely. Only the final decision is sense amplified to full-
swing digital. CM does not modify the core bit-cell array and
thus is able to maintain the storage density.

III. PROPOSED ARCHITECTURE

In this section, a CM-based SDM (CM-SDM) is proposed
(see Fig. 3(a)) to address the drawbacks of conventional
architecture listed in Section II-C. In particular, CM-SDM
employs the following key techniques:
• The AD is designed using CM (CM-AD) (see Fig. 3(b))

in order to overcome its bandwidth limitation and elim-
inate the use of digital logic.

• The CA is implemented using a hierarchical binary deci-
sion (HBD) technique (CA-HBD) as shown in Fig. 3(c)
in order to minimize the routing overhead of GBLs.

A. Compute Memory-based Address Decoder (CM-AD)

The proposed CM-AD generates the Hamming distance
per (1) via a three-step process: 1) MR-READ process
generates BL voltages VBL and VBLB that are proportional
to the sum aij + pj over the field of real numbers, followed
by 2) the use of BL-ASP to compute aij ⊕ pj and 3) finally
the Hamming distance (via a capacitive adder). These steps
are described next.

The MR-READ step begins with the application of access
pulses simultaneously to the rows storing aij and pj such
that the pulse width T � RBLCBL, where RBLCBL is the
RC time constant of BL/BLB [2]. This results in a BL/BLB
voltage (see Fig. 4) given by:

VBL = VPRE − (aij + pj)∆VBL (5)
VBLB = VPRE − (aij + pj)∆VBL (6)

where ∆VBL = VPRE(T/RBLCBL). A replica bit-cell is
employed to avoid writing p into the main array A (see
Fig. 3(b)).
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Fig. 3: Proposed SDM architecture (CM-SDM): (a) architec-
ture of single block, (b) AD with CM (CM-AD) including
deeply embedded mixed signal processing units, and (c)
CA with hierarchical binary decision (CA-HBD) (NGBL:
number of GBLs).

The second step (BL-ASP) begins with the BL/BLB pro-
vided as inputs to differential comparators [21] sized to fit
within a single bit-cell pitch with an appropriately selected
reference voltage Vref = VPRE−∆VBL/2. Doing so results
in binary valued comparator outputs:
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Fig. 4: Multi-row read (MR-READ) for EXOR operation in
CM-AD when aij = 0.

XBL = aijpj = sgn(Vdiff,BL) = sgn{0.5− (aij + pj)} (7)

XBLB = aij + pj = sgn(Vdiff,BLB) = sgn{0.5− (aij + pj)}

A NOR2 gate that combines the comparator outputs generates
aij ⊕ pj as follows:

aij ⊕ pj = sgn{0.5− (aij + pj)}+ sgn{0.5− (aij + pj)} (8)

Next, a J-bit capacitive adder (see Fig. 3(a)) accepts
aij ⊕ pj from the NOR2 gate output and employs charge
redistribution to compute the summation in (1) as follows:

Vsum,i =
1

J

J∑
j=1

(1− aij ⊕ pj)VPRE (9)

The last step involves an analog comparator that generates
the decoded address bit si as shown below:

si = sgn(Vsum,i − VR) (10)

This sequence of operations is repeated I/M times.
Thus, CM-AD reads ai in single read cycle (single

precharge) and has ≈ J/BIO times higher throughput as
compared to the conventional AD. Additionally, CM-AD
is more energy-efficient than a digital implementation be-
cause the capacitive adder employs small capacitances (i.e.,
C = 10 fF) and requires a simple switching operation.

B. Counter Array using Hierarchical Binary Decision (CA-
HBD)

The proposed CA-HBD architecture minimizes the inter-
block data transfer as shown in Fig. 3(c), where GDB and
LDB are global and local decision blocks, respectively. The
CA-HBD architecture requires to record the row access count
Ni, i.e., the number of accesses to each physical address ai

in A during the WRITE operation. The row access count Ni

is recorded in an additional column in the CA.
During the READ operation, the LDB of the mth block

generates a local binary decision ym,j and Nm as follows:

Nm =
∑
i∈Hm

Ni (11)

ym,j = sgn(
∑
i∈Hm

cij) (12)
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y2

D
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1
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Fig. 5: Global decision block (GDB) to incorporate local
decisions (ym,j) with impact factor Nm.

where Hm is the set of row indices in the mth block CAm

that were selected during READ, and Nm represents the sum
of the row access counts for these rows.

Finally, the GDB (see Fig. 5) generates the final SDM
output bit yj as follows:

yj = sgn{
M∑

m=1

sign(ym,j)Nm}, where (13)

sign(x) =

{
1, if x > 0

−1, otherwise

Thus, the GDB weights CAm’s contribution ym,j by Nms
in order to assign more weight to those blocks which were
accessed more frequently during the WRITE phase. In this
manner, the LDB transmits compressed information to the
GDB (Note: that ym,js are binary numbers), and thus ≈ J-
bits are required instead of J(Bc + Bx)-bits as shown in
Fig. 3(c), thereby minimizing the delay and the energy
penalty for the data transfer.

IV. CIRCUIT-AWARE BEHAVIORAL, ENERGY, AND DELAY
MODELS

The analog-intensive MR-READ and BL-ASP operations
of the CM-AD are intrinsically vulnerable to various sources
of noise due to its low-SNR operation. The dominant sources
of noise in the CM-AD are: 1) local transistor threshold volt-
age Vth-variation across bit-cells caused by random dopant
fluctuations, and 2) input offset of the analog comparator.
This section derives behavioral models of the non-ideal
behavior of CM-AD to predict system performance. Energy
and delay models are also provided.

A. Behavioral Model

In the MR-READ operation, the Vth variations were mod-
eled as a Gaussian distributed random variable in [2]. In this
paper, two binary numbers a and p (we omit indices i and j
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TABLE I: Design parameters for SDM.

Parameter Value Parameter Value
VDD(= VPRE) 1 V M 4~2048

I/M 512 J 256
Bc(= Bx) 4 BIO 8~64

Clock frequency 1 GHz NGBL 256
C 10 fF CBL 230 fF

for simplicity) are MR-READ. The impact of Vth-mismatch
on the BL/BLB voltages is modeled as follows:

fVBL(VBL; a, p) = N (VPRE − (a+ p)∆VBL, (a+ a)σ2
cell)

fVBLB (VBLB ; a, p) = N (VPRE − (a+ p)∆VBL, (a+ p)σ2
cell) (14)

where fVBL
(VBL; a, p) and fVBLB

(VBLB ; a, p) are the prob-
ability density functions of VBL and VBLB , respectively,
parametrized by a and p. N (µ, σ2) is the normal distribution
with mean µ, and variance σ2, and σ2

cell is the variance of
∆VBL due to Vth variation across the storage array A. It is
assumed that Vth variations for the bit- and replica cells are
identical.

The comparator outputs XBL and XBLB are obtained as:

XBL =

{
0 if VBL < Vref + Voffset

1 otherwise

XBLB =

{
0 if VBLB < Vref + Voffset

1 otherwise

f(VOS) = N (0, σ2
comp) (15)

where an input offset voltage (Voffset) of the comparator
is modeled as a zero mean Gaussian random variable with
variance σ2

comp.
The charge injection noise in the switches and thermal

noise/mismatch of capacitors in the capacitive adder are
made negligible by ensuring C > 10 fF [22]. The single
comparator at the output of capacitive adder can be designed
to have a small input offset by using large transistor sizes
and calibration techniques.

The behavioral models in this section are validated in
Fig. 8 of Section V.

B. Delay and Energy Models

The delay per READ of the conventional SDM and the
CM-SDM are described as follows:

TSDM = TAD + TCA (16)
TAD = (I/M)(J/BIO)Tread

TCA = SH,max(J/BIO)Tread

+M dJ(Bc +Bx)/NGBLeTGBL

TCM−SDM = TCM−AD + TCA−HBD (17)
TCM−AD = (I/M)Tread

TCA−HBD = SH,max(J/BIO)Tread

+M dJ/NGBLeTGBL
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where TAD (TCM−AD) and TCA (TCA−HBD) are the delay
for AD (CM-AD) and CA (CA-HBD). In addition, Tread is
the delay for a single read access for memory arrays A and C,
TGBL is the delay in transferring a single bit via the GBLs,
NGBL is the number of GBLs, and SH,max is the maximum
number of selected addresses per block. It is assumed that
all other blocks are operating in parallel while the memories
are being accessed. Hence, the delay of blocks such as the
logic blocks in the conventional AD and the capacitive adder
in CM-AD are not included in (16)-(17). The factors (I/M )
and (J/BIO) in TAD are equal to the number of rows and
the number of read outs per row, respectively, in ADm. The
partial sums per block are transferred serially through NGBL

GBLs, thus requiring dJ(Bc +Bx)/NGBLe cycles.
The throughput enhancement of CM-SDM over SDM

derives from: 1) J/BIO ≥ 4 in TAD, and 2) Bc + Bx ≥ 8
in TCA. The delay models in (16)-(17) are plotted in Fig. 6,
where it is assumed that Tread and TGBL take two clock cy-
cles. CM-SDM demonstrates a 25× smaller delay compared
to SDM with BIO = 8 due to high bandwidth of CM-AD
when M = 4. The benefit of HBD at M = 2048 is evident
as there is a 3.2× additional delay reduction as compared to
CM-SDM without HBD.

The energy consumption per READ of the conventional
SDM and the CM-SDM are modeled as follows:

ESDM = EAD + ECA (18)
EAD = I[(J/BIO)(EPRE + Eleak) + JESA + Elogic]

ECA = SHBc[(J/BIO)(EPRE + Eleak) + JESA]

EPRE = JCBL∆VBLVPRE

Eleak = IJPleak_cellTread

ECM−SDM = ECM−AD + ECA−HBD (19)
ECM−AD = I(2EPRE + Eleak + 2JEcomp + Ea_add)

ECA−HBD < ECA
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where EAD (ECM−AD) and ECA (ECA−HBD) are the en-
ergy consumptions of the AD (CM-AD) and CA (CA-HBD),
respectively. EPRE and Eleak are the energy consumptions
of the precharge and bit-cell leakage for the entire memory
array A, respectively, and ESA (Ecomp) is for a single
unit of sense amplifier (analog comparator). Pleak_cell is the
leakage power of each bit-cell. The energy consumptions
of the analog capacitive adder in the CM-AD and logic
blocks in the conventional AD per single Hamming distance
computation are denoted by Ea−add and Elogic, respectively.
Energy consumptions from other blocks such as WL drivers
[23], CA’s decision blocks are assumed to be negligible. It is
assumed that the AD and CA can be placed into a deep sleep
mode independently [17]. Note that EAD � ECA because
I � SHBc. The ECM−AD has a scaling factor of two for
the first and third terms as CM-AD reads aij and pj , and
employs two comparators per bit-cell column.

The energy efficiency of CM-AD derives from the fact
that: 1) the first term in EAD and ECM−AD is the largest, and
because J/BIO ≥ 4, 2) Ea_add � Elogic as the capacitances
in the capacitive adder are very small, e.g., 10 fF, and the
capacitive adder requires only simple switching operations,
and 3) leakage energy in ECM−AD is smaller than that in
EAD because the high-throughput (see delay models (16)-
(17)) of CM-SDM permits it to be placed into a deep sleep
mode much quicker than SDM [17].

The energy models (18) and (19) using typical design
parameters from Table I are plotted in Fig. 7. The component
values of (18) and (19) obtained from Fig. 11. Figure 7
indicates that CM-SDM achieves energy reductions of 2.1×
to 12.4× over SDM.

V. SIMULATION RESULTS

In this section, we apply SDM for hand-written digit
recognition. Monte Carlo circuit (HSPICE) simulations in
65 nm CMOS process technology are employed to validate
the models in (14) and (15). These models are employed
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Fig. 8: Vsum from circuit simulations and system simulations
with behavioral models (14) to (15) with J = 8 and ∆VBL =
50mV .

in system simulations to estimate the output bad pixel ratio
(Bo). Energy and throughput benefits are demonstrated via
circuit simulations and the energy/throughput models (16),
(17), (18), and (19).

A. System Configuration

Nine 16 × 16 binary shapes of numbers from 1 to 9 are
employed to generate p and d as shown in Fig. 9(a) and
(b). For each of the nine patterns, 225 noisy copies with
input bad pixel ratio Bi = 0.25 are generated by randomly
flipping 25% of the bits. These images form the training data
set St of size 255× 9 = 2295 and are written into the SDM
in the auto-associative mode (p = d).

In hetero-associative mode, during the training phase, p
and d are assigned images corresponding to consecutive
numbers, e.g., if p is assigned image corresponding to 4 then
d is assigned the image corresponding to 5. Thus, during the
READ operation, the SDM retrieves the image corresponding
to the number that is one greater than the input number, as
shown in Fig. 9(b).

After the training, 100 contaminated copies of each pattern
(total of 900 inputs) with Bi = 0.15, 0.25, 0.3 are generated
and provided as the address p for classification. Four READ
iterations of the auto- and hetero-associative memory are per-
formed. The error immunity against faulty hardware increases
with larger R in (1) as each data is distributed across greater
number of physical addresses. On the other hand, R needs to
be small enough not to create excessive intersection between
physical addresses for different number’s images. To balance
this trade-off, R for WRITE and READ operations are set to
79 and 82, respectively.

The block size I/M = 512 is chosen to balance the read
out delay and area efficiency of memory. The value of BIO =
64 is chosen as its typical value of J/BIO ranges from 4
to 32 in conventional SRAM architectures [17], in order to
permit the maximum bandwidth. In this specific application,
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M = 4 and SH ≈ 0.1I , which will be used in the rest of
this section. The design parameters (other than BIO and M )
used in the simulations are summarized in Table I.

B. Model Validation

Monte-Carlo circuit simulations show that σcell/∆VBL =
6.5% and the analog comparator has an input offset σcomp =
18 mV.

The behavioral models of the entire analog signal pro-
cessing chain from the bit-cell to the final output Vsum are
validated as shown in Fig. 8, where the results of Monte-
Carlo circuit simulations are compared with those from
system simulations employing the behavioral models (14)-
(15). Nine different combinations of p and ai (with J = 8)
are chosen as inputs. Figure 8 indicates that the maximum
modeling error is 4.5% of the dynamic range of Vsum.
This level of accuracy is sufficient for system performance
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Fig. 10: Energy vs. Bo trade-off with n = 4. Here ∆VBL =
25 mV~125 mV for SDM and 75 mV~175 mV for CM-
SDM.

estimation, as it is much less than the smallest non-zero
Hamming distance.

C. System Performance

The output bad pixel ratio Bo[n] in the n-th READ
iteration is computed as:

Bo[n] =
1

900J

900∑
k=1

Hk[n] (20)

where Hk[n] is the Hamming distance between the SDM
output yk[n] at time index n and the ideal output for the kth

input image.
Figure 9(c) shows that the conventional SDM, the CM-

SDM (without HBD) and the CM-SDM, all converge to
achieve a Bo less than 2% for n ≥ 3 when Bi ≤ 25%.
Similar results were observed for the hetero-associative mode
as well. Furthermore, SDM and CM-SDM were found to
achieve Bo[n] that were within < 5% from each other for
n ≤ 3 (the Bo of CM-SDM is slightly worse), for all three
values of Bi. The Bo of CM-SDM was higher than SDM
by only 0.4% for n = 4 and Bi = 25% indicating that the
non-ideal behavior of CM-SDM is successfully compensated
by the inherent noise immunity of SDM and the associative
mode of operation. The Bo degradation of the CM-SDM can
be reduced by increasing the number of blocks M with large
I so that more averaging can occur.

D. Delay and Energy Savings

The conventional SRAM read access and MR-READ re-
quire two clock cycles, and the data transfer from the LDB to
the GDB also requires two cycles. The proposed CM-SDM
achieves 3.1× smaller delay over SDM as shown in Fig. 6
due to high bandwidth of CM-AD with M = 4.

The various components of the energy models in (18) and
(19) are measured via HSPICE simulations. To do so, the
parasitic capacitance of BL (CBL = 230 fF) is extracted from
the layout of an SRAM bit-cell. These energy components are
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a function of the BL swing ∆VBL. The intrinsic robustness of
SDM and the associative mode of operation enable a lower
value of ∆VBL to be employed as compared to a typical
value in standard SRAM, thereby resulting in even greater
energy savings.

Figure 10 shows the trend of Bo with ∆VBL scaling, and
the Bo > 2% when ∆VBL < 75 mV and 125 mV in the con-
ventional SDM and CM-SDM, respectively. Thus, energy-
optimal ∆VBLs are applied to both conventional and CM-
SDM in order to obtain the energy breakdowns in Fig. 11.
This figure shows that CM-SDM achieves approximately
2.1× reduced energy as compared to SDM.

VI. CONCLUSION

SDM provides great potential to address stochastic and
unreliable behavior of nanoscale fabrics due to its inherent
robustness. However, not many SDM architectures have been
proposed due to the challenges in achieving high throughput
and energy-efficiency. An in-memory computing platform,
Compute Memory can be a possible solution to such memory-
intensive algorithms/applications. The CM-SDM achieves
aggressive energy-efficiency and high throughput by allowing
hardware error/noise introduced by low-SNR operation of
CM and approximate decisions from HBD. The non-ideal
behavior of CM and HBD is successfully tolerated by inher-
ent robustness of SDM and its associative memory operation.
The benefits of CM-SDM increases with data volume in
big data applications and with high density memory devices.
Extensions to SDM architectures based on emerging memory
topologies are potential future directions.
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