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Abstract-In this paper, we present the finite- 
precision analysis of the pipelined strength-reduced 
adaptive filter architecture. This architecture pro- 
vides the dual advantage low power dissipation and 
high speed operation. Precision requirements for 
the traditional cross-coupled (CC) and the strength- 
reduced (SR) architectures are compared. In case 
of the filter block (F-block) coefficient precision, the 
SR architecture requires 0.3 bits more that the corre- 
sponding block in the CC architecture. Similarly, the 
weight-update (WUD-block) in the SR architecture is 
shown to require 0.5 bits fewer than the corresponding 
block in the CC architecture. This finite-precision ar- 
chitecture is then used as a near-end crosstalk (NEXT) 
canceller for 155.52 Mb/s  ATM-LAN over unshielded 
twisted pair (UTP) category-3 cable. Simulation re- 
sults are presented in support of the analysis. 

I. INTRODUCTION 

Strength reduction is an algebraic transformation, 
which has been proposed [3] to trade-off multipliers with 
adders in a complex multiplication thereby achieving 
power reduction. In [6], we proposed the application of 
strength reduction transformation at  the algorithmic level 
to  adaptive systems involving complex signals and filters. 
It was shown in [6] that the strength-reduced (SR) fil- 
ter enables power savings of 21 - 25% over the tradi- 
tional cross-coupled (CC) with no loss in performance. 
However, the application of strength reduction increases 
the critical path and hence an inherently pipelined SR 
(PIPSR) architecture was also presented. Furthermore, 
by trading of the throughput gained through pipelining 
with power supply scaling [3], it was demonstrated that 
additional power savings of 40 - 69% are feasible. In 
this paper, we present the finite-precision analysis of the 
PIPSR architecture developed in [6]. It is shown that 
the precision requirements of SR architecture are simi- 
lar to  that of the CC architecture. Clearly, the SR and 
PIPSR architectures are attractive alternatives to  the 
traditional CC architecture for high bit-rate communica- 
tions and digital signal processing applications. 

In this paper, a linear model is employed for coefficient 
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quantization noise. The filter (F) block precision, BF 
is chosen such that the signal-to-quantization-noise-ratio 
(SQNR)  is greater than the desired signal-to-noise ra- 
tio, SNR,. The coefficient precision for weight-update 
( W U D )  block, BWUD is determined by applying the 
stopping criterion [ a ] ,  [4], which puts a lower limit upon 
the correction term being added to the weight update. 
This criterion is given by 

where p is the step-size, E[le(n)12] the mean-squared er- 
ror, u2 is the power of the received signal and BWUD 
is the precision (including sign-bit) of the coefficients in 
weight-update block (WUD-block). A non-linear analy- 
sis is presented in [l] for a tighter bound on BWTJD. Such 
a model however becomes complex to employ if the num- 
ber of terms in the weight-update equation increases as is 
the case with C C  and SR architectures. The purpose of 
this paper is just to  compare the precision requirements 
for CC and SR architectures. We employ linear-analysis 
for the comparison. 

We demonstrate an application of the finite-precision 
SR architecture as a near-end crosstalk (NEXT) can- 
celler for 155.52 M b / s  [5] ATM-LAN over 100 meters 
of unshielded twisted pair category-3 (UTP-3) cable em- 
ploying 64-CAP (carrierless amplitude/phase) modula- 
tion scheme. We present the simulation results for this 
application in order to determine the precision require- 
ments of various signals and to  support the analytical re- 
sults presented in the paper. 

11. PIPELINED STRENGTH-REDUCED 
(PIPS R) ARCH IT E C T U R E 

In this section, we review the strength reduction trans- 
formation and development of the PIPSR architecture 
[6] from the CC architecture. The reader is referred to  
[6] for more details, while we will present only the final 
results here. 

A .  Strength Reduction Transformation 

Consider the problem of computing the product of two 
complex numbers ( a  + j b )  and (c + j d )  as shown below 

(a  + j b ) ( c  + I d )  = (ac  - bd) + j ( ad  + bc). (2.1) 
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From (2.1), a direct-mapped architectural implementation 
Yvould require a total of four real multiplications and two 
real additions to  compute the complex product. Applica- 
tion of strength reduction involves reformulating (2.1) as 
follows 

( ~ - b ) d + a ( ~ - d )  = ac-bd,  ( a - b ) d + b ( t + d )  = ~ d + b c ,  
(2.2) 

where we see that strength reduction reduces the num- 
ber of multipliers by one at the expense of three addi- 
tional adders. Typically, multiplications are more expen- 
sive than additions and hence we achieve an overall sav- 
ings in hardware. 

B. Strength-reduced (SR) Architecture 

The SR architecture [6] is obtained by applying 
strength reduction transformation at the algorithmic level 
instead of at the multiply-add level described in the pre- 
vious subsection. Starting with the complex LMS [SI al- 
gorithm, assume that the filter input is a complex sig- 
nal vector X(n) given by X(n) = XT(n) + jXi(n), where 
X,(n) and Xi(.) are the real and the imaginary parts. 
Furthermore, if the filter W(n)  is also complex (W(n)  = 
c(n) + jd(n)), then the complex LMS algorithm is given 
by 

y(n) = WH(n- l )X(n) ,  ~ ( n )  = w(n-l)+,ue*(n)X(n),  
(2.3) 

where ,u is the step-size, e(n) = d ( n )  - y(n) is the error, 
d(n) is the desired signal and W(n) is the coefficient vec- 
tor. Also, e * ( n )  represents the complex conjugate of the 
signal e(n) and W*(n) represents the hermitian (complex 
conjugate transpose) of W(n) .  

From (2.3), we see that there are two complex 
multiplications/inner-products involved. Qaditionally, 
the complex LMS algorithm is implemented via the C C  
architecture, which is described by the following equa- 
tions: 

y r ( n )  = cT(n - l )Xr(n)  + dT(n - l)Xi(n) (2.4a) 
yi(n) = cT(n - l)Xi(n) - dT(n - l)X,(n) (2.4b) 

c(n) = c ( n  - 1) + p [e,(n)x,(n) + ei(n)Xi(n)] (2 .4~)  
d(n) = d(n - 1) + p [e,(n)Xi(n) - ei(n)X,(n)], (2 .44  

where e(n) = e,.(n) + j e i ( n )  and the F-block output is 
given by y(n) = y,.(n) + jyi(n). Equations (2.4a-2.4b) 
and (2.4~-2.4d) define the computations in the F-block 
and the WUD-block, respectively. A direct-mapped im- 
plementation of (2.4) would require 8N multipliers and 
adders. 

We see that (2.4) has two complex inner-products and 
hence can benefit from the application of strength reduc- 
tion. Doing so results in the following equations, which 
describe the F-block computations of the SR architecture 
PI : 
y1(n) = cT(. - l)X,.(n), y2(n) = dT(n - l )Xdn) ,  

y3(n) = -dT(n - 1)Xi(n),  (2.5a) 

Yr(.> = ?41(n) + u3(n), Yi(n) = Y2(.) + !43(n), (2.5b) 

where Xl(n)  = X,(n) - Xi(n), c1(n) = c(n)  + d(n), and 
d l (n)  = c(n) - d(n). Similarly, the WUD computation 
is described by, 

C I ( ~ )  = c1(n - 1) + ,u[eXl(n) + eX,(n)] 
dl(n) = d l (n  - 1) + p[eX,(n) + eX3(n)], 

(2.6a) 
(2.6b) 

where eXi(n)  = 2er(n)X;(n), eX2(n) = 2ei(n)X,(n), 
eX3(n) = el(n)Xl(n),  el(n) = e,(n) - ei(n). It is easy 
to show that the SR architecture requires only 6N multi- 
pliers and 8N + 3 adders. This is the reason why the SR 
architecture results in 21 - 25% power savings [6] over the 
C C  architecture. 

C. Pipelined Strength-reduced (F'IPSR) Architecture 

As explained in [6], both the SR as well as C C  architec- 
tures are bounded by a maximum possible clock rate due 
the computations in this critical path. This throughput 
limitation is eliminated via the application of the relazed 
look-ahead transformation [7] to the SR architecture (see 
(2.5-2.6)). Application of relaxed look-ahead to the SR 
architecture in (2.5-2.6) results in the following equations 
that describe the F-block computations in the PIPSR 
architecture: 

Yl(n) = CY(. - Dz)X,.(n), Yz(n) = dT(n - D2)Xa(n), 
y3(n) = -dT(n - Da)Xl(n), (2.7a) 

Yr(.) = Yl(n) + y3(n), Yi(n) = y a ( n )  + y3(n), (2.7b) 

where D2 is the number of delays introduced before feed- 
ing the filter coefficients into the F-block. Similarly, the 
computation of the WUD block of the PIPSR architec- 
ture are given by 

c1(n) = c1(n - D2) + 
LA-1 

p [eXl(n - D1 - i) + eX3(n - D1 - i)] (2.8a) 
i=O 

di (n)  = di(n - D2) + 
LA-1 

,u [eXz(n - D1 - i) + eX3(n - D1 - i)], (2.8b) 

where eXl(n) ,  eXa(n) and eX3(n) are defined in the 
previous subsection, D1 >_ 0 are the delays introduced 
into the error feedback loop and 0 < LA 5 0 2  indicates 
the number of terms considered in the sum-relaxation. 
A block level implementation of the PIPSR architecture 
is shown in Fig. 1 (see [6] for details) where D1 and 
D2 delays will be employed to pipeline the various oper- 
ators such as adders and multipliers at a fine-grain level. 
The high-throughput of the PIPSR architecture can be 
traded-off with supply voltage reduction resulting in ad- 
ditional power savings [6] of 40 - 69%. Therefore, the 
PIPSR architecture results in 60 - 90% power savings as 
compared to the serial C C  architecture. 

i = O  
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111. FINITE PRECISION ANALYSIS 

In this section, we will present a comparison of the pre- 
cision requirements of the CC and S R  architectures. We 
employ linear models [2] for the quantization noise. Fur- 
ther, F-block coefficient precision, BF is determined by 
treating F-block as a constant coefficient FIR filter and 
choosing S Q N R  >> SNR. The stopping criterion [2] is 
used for determining the WUD-block coefficient preci- 
sion, &uD. 

A .  F-block Precision 

Define Bx,y to  be the coefficient precision (including 
sign-bit) in x block of y architecture. Also, let N be the 
tap-length, Jjloab be the floating point M S E  and J, to  
be the specified M S E  for the fixed-point algorithm. 

Now, we determine the quantization error due to  
finite-precision implementation of the F-block. For 
CC architecture, it can be seen from (2.4a-2.4b) that 
this additional error is given by E[AcT(n)RAc(n) + 
AdT(n)RAd(n)], where Ac(n) and Ad(n) are the errors 
due to  quantization of coefficients c(n) and d(n), respec- 
tively and R = E [ X ( n ) X N ( n ) ]  is the correlation matrix of 
the input signal. Next, by assuming a uniform noise model 

it can be seen that the quantization error is given by 
~ N U ~ , ~ ~ U ; .  Therefore, if J, is the specified MSE,  the 
F-block precision is given by, 

/12, for the quantization error, and ug,cc - - ~ - ~ B F , c c  

[2]. The precision assigned should be sufficient for the 
adaptive filter to  converge to the specified M S E ,  J,. 

For CC architecture, the correction terms are given by 
(2.4~-2.4d). Using the stochastic estimates for these terms 
and on applying stopping criterion we get, 

where J ,  is the desired M S E  level. 
A similar expression can be found for the coefficient 

precision of the WUD-block in the S R  architecture. If 
we use stochastic estimates eXl(n), eXz(n) and e X s ( n )  
in (2.6), the coefficient precision of the WUD block in 
SR architecture is given by, 

Comparing (3.4) and (3.5), we see that the precision 
requirements for WUD-block in the S R  architecture are 
0.5 bits less than that of the CC architecture. This is an 
advantage of the S R  architecture over the CC architec- 
ture. This is indeed an attractive result given that the 
S R  architecture also enables power savings of 21 - 25% 

The precision requirements for WUD block of PIPSR 
architecture (see 2.8) can be determined by replacing p in 
the above analysis by pLA.  

[GI. 

1 
BF,CC > - log2 ( s ( J o   oat)) . 2 (3.1) IV. APPLICATION TO 155.52Mbls ATM-LAN 

Thus it can be seen that the coefficient precision of F- 
block for CC and SR architectures is related by, 

BF,SR = BF,CC + 0.3. (3.3) 

This shows that the F-block in the S R  architecture 
requires at the most one bit more than in the C C  archi- 
tecture. The F-block precision requirements for PIPSR 
architecture (see (2.7)) is same as that of the S R  archi- 
tecture, because both architectures involve same compu- 
tations in the F-block. 

B. WUD-block Precision 

The finite precision WUD block can be analyzed by us- 
ing linear model for coefficient quantization noise. Then, 
BWUD is chosen based on the stopping criterion (see 1.1) 

The basic transceiver block diagram is presented in 
Fig. 2. The transmitter consists of a 64-CAP (6 
bits/symbol) encoder and shaping filters with sampling 
rate of 77.76MsampIes/s, excess bandwidth CY = 15% 
and span of 8 symbol periods. At the receiver (see Fig. 
2), the received signal is distorted further due to  the su- 
perimposition of the NEXT signal. This composite sig- 
nal is processed by a fractionally space linear equalizer 
(FSLE), which is a pair of adaptive filters. In addition, 
the local transmitted symbols are passed through a com- 
plex adaptive NEXT canceller, which tries to  cancel the 
effect of NEXT in the received signal. We employ the 
finite-precision architectures presented in this paper as 
NEXT cancellers. We will assume that P I P S R  NEXT 
canceller has been obtained by pipelining SR architec- 
ture to  the pipelining level of 105 by using D1 = 109, 
Dz = 5 and LA = 2 (see [6] for more details regarding this 
choice of D1, D2 and LA). For floating point algorithm, 
Jfloat is 0.0435, which corresponds to  SNR, (defined as 
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42 lJ j loa t  for 64-CAP) of 29.85dB. Desired SNR, (cor- 
responding to  probability of error of lo-'') is 29.75dB 
(or Ja = 0.0445). For NEXT canceller being considered, 
0 2  = 42. 

I{. Simulation Results 

F-block precisions can be determined by employing 
(3.1) for CC architecture and (3.2) for both SR and 
I'IPSR architectures. On substituting above given pa- 
lameters, we obtain BF,CC = 8.87, BF,SR = 9.17 and 
. ~ F , P I P S R  = 9.17. This is also confirmed by simulation 
i,esults plotted in Fig. 3, which shows variation of the 
, ?NRs l i cer  with the F-block precision in C C ,  and SR ar- 
chitectures. Desired S N R  is attained at about 9 bit preci- 
$ion for C C  architecture and 10 bits for SR architecture. 
Fig. 3 also shows that coefficient precision required in F- 
block for the SR architecture is at the most 1 bit more 
as compared to  the C C  architecture. Recall that this 
conclusion was also obtained from (3.3). 

Similarly, the coefficient precision in the WUD-block 
can be determined by employing (3.4) for C C ,  ( 3 . 5 )  for 
SR and (3.5) with ,u replaced by p L A  for the PIPSR. 
For proper convergence, p was chosen to  be 0.0007,0.0007 
and 0.0002 for C C ,  SR and PIPSR algorithms respec- 
tively. B W ~ D  precisions are then determined (Section 
111) to  be B w u ~ , c c  = 9.45, B W ~ D , S R  = 8.95 and 
BWUD,PIPSR = 9.51. These results are confirmed by 
simulation results in Fig. 4, where desired performance is 
reached for 9 bit precision for both C C  and SR architec- 
tures. 

Therefore, we conclude that C C  and SR architectures 
have similar coefficient precision requirements. 
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