
1

Soft N-Modular Redundancy
Eric P. Kim, Student, IEEE, and Naresh R. Shanbhag, Fellow, IEEE

Abstract—Achieving robustness and energy-efficiency in nanoscale CMOS process technologies is made challenging due to the
presence of process, temperature and voltage variations. Traditional fault-tolerance techniques such as N -modular redundancy
(NMR) employ deterministic error-detection and correction, e.g., majority voter, and tend to be power hungry. This paper proposes
soft NMR that non-trivially extends NMR by consciously exploiting error statistics caused by nanoscale artifacts in order to design
robust and energy-efficient systems. In contrast to conventional NMR, soft NMR employs Bayesian detection techniques in the
voter. Soft voter algorithms are obtained through optimization of appropriate application-aware cost functions. Analysis indicates
that, on average, soft NMR outperforms conventional NMR. Furthermore, unlike NMR, in many cases, soft NMR is able to
generate a correct output even when all N replicas are subject to errors. This increase in robustness is then traded-off through
voltage scaling to achieve energy efficiency. The design of a discrete cosine transform (DCT) image coder is employed to
demonstrate the benefits of the proposed technique. Simulations in a commercial 45nm, 1.2V , CMOS process show that soft
NMR provides up to 10× improvement in robustness, and 35% power savings over conventional NMR.

Index Terms—Low-power design, signal processing systems, redundant design.
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1 INTRODUCTION

MODERN nanoscale CMOS exhibit a number
of artifacts such as process, temperature and

voltage variations, leakage, and soft errors due to
particle hits. It is expected that such non-idealities
will only increase with rapid scaling of CMOS tech-
nology [1], and dominate the behavior of post-
silicon device fabrics. Nanoscale non-idealities make
it hard to design reliable computing systems [2].
Worst-case designs address the robustness issue
with a severe power penalty. Nominal-case designs,
though energy-efficient, suffer from reliability prob-
lems. Thus, energy-efficiency and reliability need to
be addressed jointly.

Recently, error-resiliency has emerged as an at-
tractive approach [3], [4], [5], [6] towards achieving
robust and energy-efficient operation in nanoscale
CMOS. Error-resiliency permits circuit errors to oc-
cur, and compensate for these at either the cir-
cuit, architecture or system levels. Communication-
inspired error-resiliency techniques such as algorith-
mic noise-tolerance (ANT) [4], and stochastic sensor-
network-on-chip (SSNOC) [5], treat application-
specific nanoscale circuits and architectures as noisy
communication channels, and employ statistical sig-
nal processing techniques in order to enhance ro-
bustness with minimal hardware overhead. ANT has
been successfully applied to various media process-
ing kernels such as filtering, motion estimation [7],
and Viterbi decoding [8], while SSNOC-based CDMA
PN-code acquisition system [5] has similarly demon-
strated orders-of-magnitude enhancement in robust-
ness along with significant energy-savings. Such tech-
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niques are able to achieve say a 90% system re-
liability with very high component error probabil-
ities up to 40%, which corresponds to orders-of-
magnitude enhancement in robustness over conven-
tional systems. Energy-savings ranging from 20%-
to-60% is achieved simultaneously. These techniques
are termed as being effective, as they achieve robust-
ness and energy-efficiency simultaneously. Memory-
specific techniques have also been developed [6].
However, a key drawback of ANT and SSNOC-like
approaches is that these are application-specific, i.e.,
error compensation assumes the knowledge of the
algorithm being implemented. RAZOR [3] overcomes
this limitation by focusing on error compensation at
the logic and microarchitectural levels, but its effec-
tiveness is limited to component error probabilities
of 1.62% [3]. N-modular redundancy (NMR) [9], [10],
[11], [12] (see Fig. 1(a)) is a commonly employed
fault-tolerance technique with general applicability.
In NMR, the same computation is executed in N
processing elements (PEs), and the outputs are ma-
jority voted upon to select the correct one. However,
its N× complexity and power overhead restricts its
applicability to cost-insensitive critical applications
such as those in the military, medical and high-end
servers. Similarly, a number of other fault-tolerance
techniques have been proposed in the past such as
checkpointing [13], and coding techniques [14], [15].
Checkpointing is a technique that takes a snapshot of
the entire execution state. In case of an error detection,
the system rolls back to the most current checkpoint
and re-executes. However, complex systems that have
many processes sharing data can make checkpointing
a non-trivial task. Also the storage requirement can be
very large. On recovery, there is a significant time and
energy overhead due to re-execution. Coding tech-
niques make use of redundant bits that are organized

Digital Object Indentifier 10.1109/TC.2010.253 0018-9340/10/$26.00 ©  2010 IEEE

IEEE TRANSACTIONS ON COMPUTERS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.



2

PE-1

PE-2

PE-N

ŷx
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Fig. 1. Block diagram of: (a) NMR, and (b) soft NMR.

in a systematic way to enable error detection and cor-
rection. Simple techniques such as parity codes do not
have sufficient coverage, while complex codes such as
cyclic codes are expensive to implement. Each of these
techniques are effective in enhancing robustness but
at a significant energy-cost. Therefore, there is a need
for effective error-resiliency techniques, i.e., those that
provide energy-efficiency and robustness inherent in
communications-inspired error-resiliency techniques
[16], while exhibiting the generality of NMR. In this
paper, we propose to employ error and signal statis-
tics of the underlying circuit fabric and architecture in
order to achieve this goal. We proposed soft NMR (see
Fig. 1(b)) [17] as an effective error-resiliency technique
with general applicability. Soft NMR incorporates
communication-inspired techniques into NMR in or-
der to improve its effectiveness, while preserving its
generality. Structurally, soft NMR differs from NMR
in that it incorporates a soft voter, which is composed
of a detector. Thus, soft NMR views computation in the
PEs as a noisy communication channel, and employs
the detector as the slicer. Soft NMR enhances the
robustness of NMR, which is then traded-off with
energy in order to achieve energy-efficient operation.
We show that soft NMR provides between 2×-to-10×
improvement in robustness along with 13%-to-35%
savings in power over NMR, for a DCT-based image
compression kernel implemented in a commercial
45nm, 1.2V , CMOS process. It must be noted that
though a number of NMR voting strategies exist, none
exploit error statistics to enhance robustness, or trade-
off robustness to achieve energy-efficiency.

In this paper, we describe past work in
communication-inspired design techniques in Section
2. Next, the proposed soft NMR technique is
introduced in Section 3. Statistical analysis of soft
NMR, NMR and ANT is described in Section 4,
which shows that soft NMR will always outperform
NMR. Application of soft NMR, NMR and ANT
to a discrete cosine transform (DCT)-based image
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Fig. 2. An ANT based system.

coder is demonstrated in section 5. Finally Section 6
concludes the paper with future research directions.

2 COMMUNICATION-INSPIRED ERROR-
RESILIENCY TECHNIQUES

Communication-inspired techniques such as ANT [16]
employ statistical signal processing techniques such as
estimation and detection to compensate for errors in
hardware, and exploit the statistical nature of system-
level performance metrics. These techniques attempt
to meet metrics such as signal-to-noise ratio (SNR)
or bit error-rate (BER) specification of the application,
instead of the somewhat arbitrary notion of numer-
ical correctness employed conventionally. This view
enables communication-inspired techniques to simul-
taneously achieve robustness and energy-efficiency.

2.1 Algorithmic noise-tolerance (ANT)

Algorithmic noise-tolerance in Fig. 2 has some sim-
ilarities to dual-MR (DMR). It has a main PE and
an estimator PE. The main PE is permitted to make
errors, but not the estimator PE. Unlike DMR, the
estimator PE in ANT, is a low-complexity (typically
5%-to-20% of the main PE complexity) computational
block generating a statistical estimate of the correct
main PE output, i.e.,

ya = yo + η (1)
ye = yo + e (2)

where ya is the actual main PE output, yo is the
error-free main PE output, η is the hardware error,
ye is the estimator PE output, and e is the estimation
error. Note: the estimator PE has estimation error
e because it is a simpler than the main PE. ANT
exploits the difference in the statistics of η and e. The
final/corrected output of an ANT-based system ŷ is
obtained via the following decision rule:

ŷ =

{
ya, if |ya − ye| < τ

ye, otherwise
(3)

where τ is an application dependent parameter cho-
sen to maximize the performance of ANT.

Thus, ANT detects and corrects errors approxi-
mately, but does so in a manner that satisfies the
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Fig. 3. The stochastic sensor network on a chip
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performance specifications (SNR or BER) of the
application at hand.

For ANT to enhance robustness, it is necessary that
when η �= 0, that η be large compared to e. In addition,
the probability of the event η �= 0, i.e., the component
probability of error for the main PE, be small. For
ANT to also provide energy-efficiency, it is necessary
that the errors in the main PE are primarily due
to enhancement of its energy-efficiency. In practice,
these properties are easily satisfied when errors in
the main PE occur due to timing violations due to
voltage overscaling (VOS) [4] or a nominal case design
being subjected to a worse case process corner. In
VOS, the supply voltage is scaled below the critical
voltage Vdd−crit needed for error-free operation. When
the supply voltage is lower than Vdd−crit, the circuit
will operate slower than the designed margins, and
thus timing violations will occur. The errors due to
these timing violations are referred to as VOS type
errors. As most computations are LSB first, VOS type
errors are generally large magnitude MSB errors.

ANT has been shown to achieve up to 3× energy
savings in theory and in practice via prototype IC
design [4] for finite impulse response (FIR) filters.

2.2 Stochastic sensor network on a chip (SSNOC)

Recently, the ANT approach has been extended into
the networked domain via the concept of a SSNOC
[5]. SSNOC relies only on estimator PEs or sensors to
compute, and it permits hardware errors to occur in
them (see Fig. 3). Thus, the output of the ith estimator
PE (PE-est-i) is given as

yi = yo + ηi + ei (4)

where ηi and ei are the hardware and estimation
errors in the ith estimator, respectively.

If hardware errors are due to timing violations, one
can approximate the error term in (4) as (1 − pe)ei +

Soft VoterSoft NMR

Fig. 4. The soft NMR framework.

peηi, where pe is the probability of ηi �= 0, i.e., the com-
ponent probability of error. Such an ε-contaminated
model lends itself readily to the application of robust
statistics [18] for error compensation. A key drawback
of SSNOC is the feasibility of decomposing computa-
tion into several sensors whose outputs are statistically
similar, i.e., its generality. SSNOC has been applied
to a CDMA PN-code acquisition system, where the
sensors were obtained through polyphase decompo-
sition. Simulations indicate orders-of-magnitude im-
provement in detection probability while achieving
up to 40% power savings.

3 SOFT N -MODULAR REDUNDANCY

Techniques such as ANT and SSNOC described in
Section 2, though effective, are application dependent.
NMR, though general, incurs a heavy power penalty.
In this section, we propose soft NMR, which em-
bodies the generality of NMR and the effectiveness
of ANT. First, we present soft NMR by introducing
a mathematical framework in which soft NMR and
related techniques can be analyzed and understood.
Various components of this framework are described,
followed by the derivation of the soft voter algorithm
and architecture.

3.1 Soft NMR Framework
The soft NMR framework (see Fig. 4) includes
three components: 1) data and error statistics, 2)
an application-dependent performance-metric, and 3)
detection techniques. This framework enables us to
systematically develop soft voting algorithms (see
Fig. 1(b)) and architectures. Referring to Fig. 1(b), the
parameters used to describe soft NMR are defined in
Table 1.

3.1.1 Performance metrics
The soft voter is a realization of a Bayesian detector.
A Bayesian detector tries to minimize the associated
cost in making a decision. If we denote C(ŷ, yo) as
the cost incurred in choosing ŷ as the correct value,
when in fact yo is the correct value, the conditional
cost (given that yo is the correct value) is C(ŷ, yo).
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TABLE 1
Parameters of soft NMR framework.

Notation Description
N total number of PEs
yo correct output value
Yo random variable corresponding to yo
V output space: set of all possible outputs

Its cardinality is m and its elements are
denoted as v1, v2, ..., vm.
Note that y1, y2, ..., yN , ŷ, yo ∈ V

R observation space: the set of all PE
observations {y1, y2, ..., yN}

H hypothesis space: set of hypotheses to be
employed in detection

F the event that a fault has occured
i PE index
j V index
rj prior defined as P (yo = vj)

Note that
∑

vj∈V rj = 1

qj the probability that PE observation yi
is vj given a fault has occurred,
i.e., qj = P (yi = vj |F )

pe,sys overall system error probability, i.e.,
the probability that ŷ �= yo

Pei distribution of the error ei of PE-i
pei error probability of PE-i

cj(R) occurrences of vj in R
C(ŷ, yo) cost of deciding ŷ as the correct value,

given yo was the correct value

Denoting δ(y1, ..., yN ) = ŷ as the decision rule based
on the N observations, the average cost, or Bayes risk
is given as

E(C(δ(y1, ..., yN ), Yo)) (5)

where the expectation is over the random variable
Yo representing the correct output yo. It can be
shown [19] that the decision rule δ which mini-
mizes the Bayes risk, minimizes the posterior cost
E(C(ŷ, Yo)|y1, ...yN ). The soft voter is an imple-
mentation of the Bayes decision rule δBayes =
minδE(C(δ(y1, ..., yN ), Yo)|y1, ..., yN ).

Thus, the cost function is the sole element that
determines the functionality of the soft voter and
should be closely tied to the application performance
metric to maximize performance. For example, in a
CPU, a single bit-flip in the instruction code regardless
of its location will result in an incorrect instruction
to be executed. Here, it is important to prevent any
errors from occurring. Thus, an appropriate metric
would be pe,sys, the system error probability. The
cost associated with this metric would be to assign
a constant cost to all incorrect decisions ŷ �= yo and
0 to a correct decision. In other applications, where
small differences in the numeric value of an output
are tolerable, we may wish to penalize large errors

more than small errors. Here, a suitable metric may
be the minimum mean square error (MMSE) which
carries a cost function C = (ŷ − yo)

2. For example,
in image processing, the quality of an image may be
assessed objectively with its peak signal-to-noise ratio
(PSNR).

3.1.2 Error and data statistics

Soft NMR makes explicit use of two types of statistical
information: (1) data statistics, and (2) error statistics.
Data statistics are the distribution of the error-free PE
output. This is referred to as the prior distribution, or
prior. Error statistics are the distribution of the errors
at the PE output. Note: the prior depends only upon
input data statistics and the input-output mapping
of the computation. The error distribution depends
upon input data statistics, the functionality, the PE
architecture, circuit style, and other implementation
parameters. We, therefore, assume that both data and
error statistics are obtained via a one-time Monte
Carlo simulation using characterization/typical data.
Data statistics is obtained via behavioral simulations
of the computation. Error statistics are obtained via
a register-transfer level (RTL) simulations of the PE
with characterization data. The performance of soft
NMR is then quantified with a separate/test data
sequence, while employing the prior and error statis-
tics obtained from the characterization data. Char-
acterization and test data sequences are said to be
statistically similar in that they are obtained from
the same random process. For example, for image
processing applications, one image is employed as
characterization data, while the test data can be any
other image(s). For architectures where a priori infor-
mation on input statistics are not available, such as
a general purpose system, or where statistics change
over time, a training module that adaptively collects
data and error statistics can be employed.

For error statistics to be meaningful, an error model
that extends the existing model used in NMR analysis
[20] is proposed. The error model separates the output
into an error-free component and the error. Further
elaboration on the error model and error characteri-
zation is provided in 3.2 and 3.3.

3.1.3 Detection techniques

The role of the soft voter in Fig. 1(b) is to determine
the output ŷ that would, on average, optimize a pre-
specified performance metric. The detector makes a
decision based on the PE observations y1, y2, . . . , yN
that minimizes the Bayes risk. The detector, however,
is constrained to a predefined hypothesis set H such
that the decision rule ŷ = δ(y1, ..., yN ) produces ŷ ∈ H.
Thus, the detection problem requires the definition of
H, from which the corrected output ŷ is selected.The
soft voter will perform a search over all elements of
H, and for practical implementations, the hypothesis
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space H needs to be limited. There are several ways
to limit H.

1) Hypothesis space equals the observation space:

H = {Hi = yi, i = 1, . . . , N}
Here one of the observations is chosen as ŷ.

2) Hypothesis space equals a value neighborhood
of the observation space:

H = {|Hi − yi| < rt} ,
where rt is a given magnitude radius

This strategy includes values that are similar to
the observations and thus has more choices for
ŷ

3) Hypothesis space equals a probabilistic neigh-
borhood of the observation space:

H = {P (yi −Hi) > rp} ,
where rp is a given probability radius

This strategy is similar to the value based ex-
panded hypothesis set, but the expansion is
based on probabilistic measures.

More details on hypothesis set limiting is given in
Section 3.6.

3.2 Error models
To enable the development of the detection frame-
work of the soft voter, we have developed a general
error model that encompasses most practical situa-
tions. We first present the conventional error model
used for NMR [20], then generalize this error model.
Refer to Table 1 for the definition of various parame-
ters and notation.

3.2.1 NMR Error Model
The NMR error model [20] assumes that each PE has
a probability p of exhibiting a fault F . Even though
a fault F has occurred, the correct value may still be
observed. With probability 1− p, the PE will be fault-
free and produce the correct value yo. When a fault
occurs, the observation will have a distribution qj(j =
1, ...,m), the probability that vj is observed. Since for
an error to occur, the PE needs to exhibit a fault and
output the wrong value, the relation between PE error
probability pei , p and qj is as follows:

pei = p(1− qc) (6)

where qc is the probability the output is yo in presence
of a fault.

This model assumes the failure is independent of
the input (or output), which is reasonable in cases
where the failure is due to random particle hits or
defects. However, timing errors due to voltage over-
scaling have a direct dependence on the input and
thus the errors depend on the input and the error-
free output.

3.2.2 Soft NMR Error Model
Soft NMR error model is a generalization of the NMR
error model given by

yi = yo + ei(x, yo) (7)

The error ei may differ for each processing element
PE-i. Also the error may depend on the input, output
or both as in (7). The distribution of ei is denoted as
Pei(ei). The relationship between pei and Pei(ei) is as
follows:

pei =
∑

ei∈V,ei �=0

Pei(ei) (8)

This error model is more general than [20] in the
sense that each PE is allowed to have a separate
error distribution, and the dependence between the
input/output of the PE and the error is captured.

The NMR error model is a special case of the soft
NMR error model. For instance, qj and p in the NMR
error model can be written as:

qj = P (yi = vj |F ) =

{
Pei(ei = vj − yo), when ei �= 0

0, when ei = 0
(9)

When ei = 0, qj = Pei(0) = 0, which implies that in
case of a fault F , it will always lead to an error. Thus
the probability of fault F becomes

p = 1− Pei(ei = 0) (10)

In (9), the dependence of Pei(ei) on output yo is clear.
Pei shifts for each value of yo for it to maintain a
constant qj .

3.3 Error statistics

Soft NMR requires the knowledge of the error statis-
tics Pei(ei). In addition, both NMR and soft NMR
work best when the individual block errors ei are in-
dependent. In this section, methods to obtain Pei(ei),
and techniques to ensure the independence of errors
are discussed.

Error statistics are obtained by comparing structural
RTL and behavioral simulations. The RTL simulations
are conducted with delay values obtained via cir-
cuit/transister level characterization of basic macros
such as a 1-bit full adder (FA). These simulations
result in timing violations. The behavioral simulations
provide the error-free output. Both simulations em-
ploy characteristic data.

The timing error distribution at the output of a 8×8,
8-bit input, 14-bit output, 2-D DCT block using Chen’s
algorithm [21], with mirror adders and array multipli-
ers [22] as fundamental building blocks, implemented
in a commercial 45 nm, 1.2 V CMOS process, is shown
in Fig. 5 for two different voltages. In Fig. 5, one
observes that the error PMFs become more spiky as
the supply voltage decreases, and that a few large am-
plitude errors have a high probability of occurrence.
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Fig. 5. Error statistics of a voltage overscaled DCT
block in a 45 nm, 1.2 V CMOS process with Vdd,crit =
1.2 V: (a) Vdd = 1 V (probability of error is 0.0374), and
(b) Vdd = 0.8 V (probability of error is 0.7142).
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Fig. 6. Component error probability pei vs. supply
voltage Vdd for the DCT architecture.

This is to be expected as the DCT architecture is LSB-
first and hence timing errors will appear in the MSBs,
i.e., large amplitude error will occur. Such statistical
characterization of macro blocks is essential if one
is to design error-resilient architectures in nanoscale
process technologies. We will employ the error PMFs
in Fig. 5 in Section 5 to study the performance of soft
NMR and its power vs. robustness trade-offs.

The component error probability pei due to VOS of
the DCT block is shown in Fig. 6. This plot was ob-
tained from structural Verilog simulations of the DCT
architecture at various supply voltages (hence delays)
but with a fixed clock frequency. For the architecture
being considered we find that pei increases rapidly as
the supply voltage is reduced beyond Vdd−crit.

3.3.1 Independence of Errors
Independent PE errors are essential for NMR to be ef-
fective. However, soft NMR does not need PE errors to
be independent, though independent PE errors reduce
the soft voter complexity, and thus are desirable. PE
errors arising from the presence of faults satisfy the
independence requirement. However, in this paper,
we consider a broader class of errors such as those that
arise from timing violations, i.e., insufficient execution

time. Thus, if all the PEs in Fig. 1 have identical
architectures and inputs, then the errors will be highly
correlated or even identical. In this case, independent
errors can be achieved by employing one or more of
the following techniques:
• architectural diversity: employing different PE ar-

chitectures.
• scheduling diversity: scheduling different se-

quences of operations on the PEs.
• data diversity: permitting each PE process a differ-

ent sequence of inputs.
• process diversity: exploiting random within-die

process variations.
In Section 5, we show the use of data diversity to

obtain independent errors.

3.4 Soft Voter
Soft NMR employs a soft voter that uses Bayesian
estimation techniques to minimize the cost. The soft
voter algorithm depends on the performance metric
and the error model. The soft voter will also depend
on the error statistics if the latter can be described
using a parametric form such as Gaussian, and if this
form is employed in deriving the soft voter algorithm
in order to reduce its complexity. In all cases, the
output of the soft voter will be a function of the error
statistics. Thus, the soft voter will be derived for both
error models described in Section 3.2, and with two
different metrics, pe,sys and MSE.

3.4.1 Soft voter that minimizes pe,sys

As mentioned in Section 3.1.1, the cost function that
minimizes pe,sys is given by:

C(ŷ, yo) =

{
1, if ŷ �= yo

0, otherwise
(11)

Under this cost function, the posterior cost becomes

E(C(ŷ, Yo)|y1, ..., yN ) =
∑
∀vj∈V

P (vj = yo|y1, ..., yN )1ŷ �=vj

(12)
where 1statement denotes the indicator function that
is 1 when statement is true and 0 otherwise. Thus, to
minimize (12), ŷ should be chosen to be vj that max-
imizes P (vj = yo|y1, ..., yN ). This result is equivalent
to minimizing pe,sys, where we would like to find the
value that has the largest probability of being correct.
Thus, the soft voter maximizes:

P (vj = yo|y1, y2, ..., yN ) =

P (y1, y2, ..., yN |vj = yo)P (vj = yo)

P (y1, y2, ..., yN )
(13)

Since the denominator of (13) is independent of vj , it
can be ignored. Thus, the soft voter finds the solution
to the following:

argmax
∀vj∈V

P (y1, y2, ..., yN |vj = yo)P (vj = yo) (14)
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Equation (14) will be referred to as the optimal rule. In
general, the optimal rule is computationally intensive
to implement if the hypothesis space H = V . This is
because an exhaustive search needs to be executed
over all possible m values of the output space, and
the output space grows exponentially with increasing
bit width. Soft NMR is an approximation of this rule
and its performance will be compared to the optimal
rule.

Assuming NMR error model, and defining the
event where k PEs are faulty as Fk, the optimal rule
(14) can be further simplified by application of Bayes’
theorem P (A|B) = P (B|A)P (A)

P (B) :

argmax
∀vj∈V

P (y1, y2, ..., yN |vj = yo)P (vj = yo) =

rj

|cj(R)|∑
k=0

P (y1, y2, ..., yN |{vj = yo} ∩ FN−k)×

P (FN−k|vj = yo) (15)

where

P (y1, y2, ..., yN |{vj = yo} ∩ FN−k) =

q
|cj(R)|−k
j

∏
l=1,...,m,l �=j

q
|cl(R)|
l (16)

P (FN−k|vj = yo) =

(|cj(R)|
k

)
(1− p)kpN−k (17)

Substituting (16) and (17) into (15), we obtain

argmax
∀vj∈V

P (y1, ..., yN |vj = yo)P (vj = yo) =

=argmax
∀vj∈V

rj

⎛
⎝ ∏

l=1,...,m,l �=j

q
|cl(R)|
l

⎞
⎠×

|cj(R)|∑
k=0

(|cj(R)|
k

)
(1− p)kpN−kq

|cj(R)|−k
j (18)

=argmax
∀vj∈V

rj

⎛
⎝ ∏

l=1,...,m,l �=j

q
|cl(R)|
l

⎞
⎠pN

(
1− p

p
+ qj

)|cj(R)|

(19)

We first simplify the optimal rule under the NMR
error model, then apply the results to the soft NMR
error model with slight modifications.
• Soft Voter using NMR Error Model

It can be shown [20] that under the NMR error
model with the assumption that the outputs of
each block are subject to independent errors,
the optimal rule can be simplified from (19) as
follows:

argmax
∀vj∈V

rj

q
|cj(R)|
j

(
1− p

p
+ qj

)|cj(R)|
(20)

using the fact that qj is assumed to be indepen-
dent of yj .

From (20), we see that for cases where |cj(R)| = 0
the expression simplifies to argmax∀vj∈V rj . This
implies that instead of searching for all m values
of the output space, only the N outputs of each
PE and the maximum a priori value need to be
evaluated. Thus, in this case the hypothesis space
becomes the observation space with one more el-
ement, the maximum a priori value. Furthermore
if qj = 0 then (20) goes to infinity which implies
that vj is the correct output. The final soft voter
equation is:

argmax
∀vj∈H

rj

q
|cj(R)|
j

(
1− p

p
+ qj

)|cj(R)|
, (21)

where H = R∪ {argmax
∀vj∈V

rj} (22)

Note that this simplification is exact, i.e., without
any approximations. At an extreme, all the values
needed to compute (20) can be precomputed and
the resulting complexity of the soft voter is O(N).

• Soft Voter using Soft NMR Error Model
Under this scenario, the equality that leads from
(19) to (20) is no longer valid.
From (9), we note that qj = 0 in (19). Also pn

is independent of j and can be omitted. The
resulting equation is:

argmax
∀vj∈V

rj

⎛
⎝ ∏

l=1,...,m,l �=j

q
|cl(R)|
l

⎞
⎠(

1− p

p

)|cj(R)|

(23)
Here the product term will only involve a max-
imum of N multiplications. The prior rj will
be known to the voter, and ( 1−p

p )|cj(R)| can be
precomputed and stored given that N is small.
Thus, at a minimum, N + 2 multiplications are
needed in evaluating (23).
However, it is not possible to reduce the hypoth-
esis space in evaluating (23) as was done in the
case of using the NMR error model, because ql
changes with every value of yj . Assuming that at
least one output is correct, limiting the hypothesis
space to the N outputs (just the observation
space) will be a reasonable approximation. The
resulting final equation for the soft voter is:

argmax
∀vj∈R

rj

⎛
⎝ ∏

l=1,...,m,l �=j

q
|cl(R)|
l

⎞
⎠(

1− p

p

)|cj(R)|

(24)
Various simulation results prove that such an
approximation has little impact on performance.
The resulting complexity for the soft voter also
becomes O(N2). As replication of blocks has a
high overhead, N tends to be small, usually 3,
which is feasible to implement.
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3.4.2 Soft voter using MSE metric
As another example in deriving the soft voter, we
consider the MSE metric. In this case, the cost function
is C(ŷ, yo) = (ŷ − yo)

2. The posterior cost becomes

E(C(ŷ, Yo)|y1, ..., yN ) =
∑
∀vj∈V

P (vj = yo|y1, ..., yN )(ŷ−vj)
2

(25)
Assuming Gaussian error statistics, differentiating
(25) and equating to zero, it is easily shown that (25)
is minimized when ŷ is the mean of the observations.
Thus, the soft voter chooses ŷ to equal the hypothesis
closest to the mean. Assuming H = R, the soft voter
functionality is described by:

ŷ = argmin
∀vj∈R

|vj − mean(y1, y2, ..., yN )| (26)

For N = 3, the (26) reduces to:

ŷ = median(y1, y2, y3) (27)

These two examples demonstrate that the soft voter
algorithm depends upon the system level perfor-
mance metric and the error model. The soft voter
algorithm can be simplified greatly at times if the error
statistics can be described via a parametric form and
if this form is exploited in the derivation of the soft
voter.

3.5 Voter Architectures and Complexity

The architecture for the soft voter that minimizes
pe,sys with N = 3 is shown in Fig. 7. The soft voter
selects one of the PE outputs as the final output ŷ only
when all three inputs are equal. If not, the maximum
a posteriori (MAP) block is activated. The MAP block
is where actual computation of the soft voter occurs.

The MAP block architecture depends on the error
model. Under the NMR error model, the MAP block
implements (21), which is shown in Fig. 8(a), where
the prior rj and the value 1−p

p
1
qj

+ 1 are stored in
memory. Each value corresponding to the PE outputs
is read from memory and cross-multiplied to compute
the MAP equation (21). Finally, the value yi that gives
the maximum is chosen as the output.

The MAP block under the soft NMR error model
which implements the computation in (24) is shown
in Fig. 8(b) for a general value of N . In Fig. 8(b), the
error PMF qj and the prior rj are stored in memory.
Signals hyp sel and input sel select a hypothesis and
an observation from Y to calculate ei and hence the
expression in (24). Thus, the power overhead of the
soft voter will be small for small values of component
error probability even though its gate complexity is
large.

Finally, the soft voter architecture for minimizing
the mean square error (MMSE) under Gaussian noise
is shown in Fig. 9. An efficient majority word voter
for a triple-MR (TMR) system can be found in [23].

com
p

com
p

com
p

1y

2y

3y

ŷ

MAP
Block

Fig. 7. Block diagram of top-level architecture of the
soft voter.
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111
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ŷ

1y

2y

3y

(a)

ŷ1y

Ny

Memory
Pe

comp

Memory
jr
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(b)

Fig. 8. Architecture of MAP block: (a) using NMR error
model, and (b) using soft NMR error model.

XNOR

com
p
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p

com
p
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XNOR

1y

2y
3y

ŷ

Fig. 9. Block diagram of median soft voter.

Given these voter architectures, the complexity of
an n-bit majority voter and soft voter are compared in
Table 2. For NMR, we consider triple modular redun-
dancy (TMR), while for soft NMR, we consider two
versions: soft double modular redundancy (DMR) and
soft TMR. Unlike DMR, which can detect but cannot
correct errors, soft DMR can detect and correct errors.
Table 2 shows that the complexity of a soft voter
increases exponentially with bit width n, because of
the memory requirements for storing error statistics.
We later show that soft NMR provides power savings
in spite of its large complexity.
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TABLE 2
Complexity comparison for n-bit voters.

Complexity (transistor count)
TMR 54n

Soft DMR 3n2n+2 + 52n2 + 1300n
Soft TMR 3n2n+2 + 468n2 + 1400n
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Fig. 10. Plot of |H| vs. radius for N = 3 using:
(a) magnitude-based hypothesis expansion, and (b)
probability-based hypothesis expansion.

3.6 Hypothesis expansion

Both NMR and soft NMR will fail to correct errors
if all N PE outputs yi (i = 1, . . . , N ) are in error.
This is because both approaches choose one of the
N PE outputs yi as the corrected output ŷ, i.e., the
hypothesis space H equals the observation space Y .
Unlike NMR, soft NMR can overcome this problem
by expanding the hypothesis space H as discussed in
Section 3.1. H is expanded by including values that
are close to Y within a certain distance measure, i.e.,
within a radius (rt or rp). Two metrics for distance
are used: (1) magnitude, and (2) probability. The
relationship between the radius and size of H is linear
for magnitude based expansion, while it depends on
the probability distribution (Fig. 5) for probability
based expansion. The size of H for a DCT increases
exponentially with rp as shown in Fig. 10.

The voter complexity also increases exponentially
as it depends on the size of H. Simulation results
show that the performance does increase, and soft
DMR approaches soft TMR (Fig. 21). The increase in
performance is due to the fact that in some cases
where all observations are in error, soft NMR is
still able to correct errors. This is shown explicitly
in Fig. 11, where one can see that TMR, soft TMR
and soft TMR with hypothesis expansion (soft TMR-
HE) all perform perfect error correction when only
one error is present. However, when two errors are
present, TMR fails catastrophically while both ver-
sions of soft TMR are able to correct about 90% of the
errors. Furthermore, in the presence of three errors,
soft TMR-HE is able to correct 39% errors even though
TMR and soft TMR both fail completely.
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Fig. 11. Plot of percentage of corrected errors for N =
3 for a 2D-DCT image coder operated at Vdd = 0.95V .
A probability radius rp of 0.3 was used for soft TMR-
HE.
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Fig. 12. The multiplier simulation setup.

3.7 Simulation Results

An 8-bit multiplier is employed as an example to
demonstrate the benefits of soft NMR. The simulation
setup is depicted in Fig. 12. The characterization
and test input data are obtained independently from
identical (uniform) distributions. Given the input dis-
tribution, The output distribution, i.e., the prior rj is
calculated from the input distribution.

Figure 13 shows the results of soft NMR vs. NMR
majority and plurality voters with N = 3. The optimal
soft voter for soft NMR is also included for compar-
ison. Figure 13(a) shows the results with binomial
noise. Figure 13(b) shows the results for a practical
situation where the error statistics are those of a 16-
bit RCA with timing errors [24]. Overall, reduction in
pe,sys of 4×-to-10× can be achieved by soft NMR over
NMR.

4 STATISTICAL ANALYSIS OF SOFT NMR,
NMR AND ANT
The benefits of soft NMR in Section 3 motivates us to
analyze its performance systematically and compare
it with ANT and NMR. Indeed, all three techniques
achieve their robustness via a voter, which makes a
decision based on a set of observations and other
relevant information. In this section, statistical anal-
ysis of soft NMR, NMR and ANT is presented [25].
Analysis of NMR has been previously done under the
NMR error model in [11], [20]. In this section, we will
present an analysis of NMR and ANT under the soft
NMR error model. The analysis assumes the statistical
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Fig. 13. Performance of soft NMR applied to a
multiplier with: (a) e being binomial with parameters
Pei(k) =

(
m
k

)
pkei(1 − pei)

m−k,m = 216 and pei = 0.5,
and (b) e obtained from a 16-bit RCA using IBM 90 nm
process with Vdd set to 66% of Vdd,crit.

ŷ
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Fig. 14. Analysis framework for soft NMR. The power
of each signal is written in parentheses.

properties of the characterization data and test data
are identical.

4.1 Analysis Framework

Soft NMR, NMR and ANT have a common feature
where several PEs perform computations, and then a
voter combines the observation of all PEs to form the
final outputs. Soft NMR and NMR have N identical
PEs (see Fig. 1), whereas in ANT (see Fig. 2), there are
2 dissimilar PEs: the main block, and the estimator.

The analysis framework is depicted in Fig. 14 in the
context of soft NMR, where N PEs compute in parallel
to produce an output yi = yo + ei, where yo is the
correct value, and ei is the error. The notation used in
this analysis is summarized in Table 1. In addition, we
employ the notation σ2

y for the signal variance/power,
and σ2

n,i for the variance/power of the error ei.
Soft NMR assumes that the error statistics at the

PE output are known. Figure 15(a) shows the error-
statistics (error probability mass function (PMF)) due
to timing violations at the output of a 16-b ripple carry
adder. The error PMF indicates large magnitude errors
to have a higher probability than small magnitude
errors. In order to simplify the analysis, we assume
the error PMF in Fig. 15(b). We define the probability
of e �= 0 as the error probability pe, and the corre-
sponding (large) error magnitude as d. In addition, we
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Fig. 15. Probability mass function (PMF) of errors due
to timing violations: (a) error statistics from a 16-b RCA,
and (b) simplified statistics used in analysis.

oy

o iy e
ŷ

,e sys

Fig. 16. The output of ANT, NMR and soft NMR
modeled as a mixture distribution.

have ei ranging from −d to d, −d ≤ ei ≤ d, we have
Pei(ei = −d) = Pei(ei = d) = pe

2 , Pei(ei = 0) = 1 − pe
and Pei(ei) = 0 for all other values of ei.

Analysis is performed employing two metrics: (1)
the system error probability pe,sys, which is the prob-
ability that the final output ŷ �= yo (see Fig. 14), i.e.,
pe,sys = 1 − P (ŷ = y0), and (2) the signal-to-noise
ratio (SNR), which is calculated as the ratio of the
signal power to the noise power σ2

y

E[(yo−ŷ)2] , where the
E operator denotes the expected value.

The distribution of output ŷ can be viewed as a mix-
ture distribution (see Fig. 16). Thus, the distribution
of ŷ is given by (see Table 1):

Pŷ(vj) = pe,sys(rj ∗ Pei) + (1− pe,sys)rj (28)

where ∗ denotes the convolution operation.
It can be easily shown that the first and second

moments of ŷ are given by

E[ŷ] =E[yo] + pe,sysE[ei] (29)
E[(ŷ − E[ŷ])2] =σ2

yo
+ pe,sysσ

2
ei + p2e,sysE

2[ei] (30)

from which SNR =
σ2
y

E[(yo−ŷ)2] can be easily calculated.

4.2 Analysis of Soft NMR
The soft voter employs the maximum a posteriori
(MAP) principle, which is optimal in the sense of
minimizing the system error probability pe,sys by
choosing the most probable value from a hypotheses
set H, given observations Y , error statistics Pei(ei)
along with the prior information rj . The soft voter
algorithm is given in (24).

An expression for the probability of error can be
obtained by using the error statistics provided in
Fig. 15(b). First, it should be noted that for a given
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correct output, there are only three possible values the
PE can produce: yo, yo + d, yo − d. This is because the
error PMF has only three error magnitudes that have
nonzero probability. If all three values are observed,
the soft voter can conclude the mid value is the correct
output. Thus, in cases where all three possible values
are observed, the soft voter will choose the correct
output.

When only two distinct values are observed, there
are two cases: (a) yo never being observed: the soft
voter has no way to estimate the correct output and
will produce an erroneous output, and (b) yo and one
other value is observed: the soft voter chooses the cor-
rect value by taking into account the error probability
and the priors. The detection rule is to choose the one
with higher probability of occurrence. Assuming two
values vi and vj are observed n times and N−n times,
respectively, the detection rule becomes:

ri

(pe
2

)N−n

(1− pe)
n

vi
>
<
vj

rj

(pe
2

)n

(1− pe)
N−n (31)

Equation (31) can be further simplified to

n
vi
>
<
vj

N

2
+

1

2

log
rj
ri

log 2−2pe

pe

(32)

where it is assumed that pe < 2
3 or else the direction

of the inequality is reversed.
The trivial case is when only one value is observed.

Either the correct value is observed resulting in no
errors, or an erroneous value is observed leading to
an error.

Combining these cases, the probability of error for
soft NMR is:

pe,sys =
m∑
i=1

ri

{
pNe (1− 1

2N−1
)+

2

�N
2 +

log
rj
ri

2log
2−2pe

pe

�∑
k=0

(
N

k

)
(1− pe)

k
(pe
2

)N−k

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(33)

If the priors rj are uniform, (32) simplifies to the
majority voter:

n
vi
>
<
vj

N

2
(34)

In this case, the system error probability simplifies to:

pe,sys = 2

N
2∑

i=0

(
N

i

)
(1− pe)

i
(pe
2

)N−i

+ pNe − 2
(pe
2

)N

(35)
which is the well-known NMR system error probabil-
ity.

In general, a closed form expression for the pe,sys
of the soft voter is difficult to obtain without specific
knowledge of the error statistics. Instead, we present

a numerical procedure to compute pe,sys. For an arbi-
trary error PMF, pe,sys is given by

pe,sys =
∑
vj∈V

rj

(∑
ei∈A

Pei(ei)

)
(36)

A =

⎧⎨
⎩ei : rj

⎛
⎝ ∏

l=1,...,m,l �=i

q
|cl(R)|
l

⎞
⎠(

1− pei
pei

)|ci(R)|

> rj

⎛
⎝ ∏

l=1,...,m,l �=j

q
|cl(R)|
l

⎞
⎠(

1− pei
pei

)|cj(R)|
⎫⎬
⎭ (37)

which is easier to compute than Monte Carlo simula-
tions. This process can be time-consuming for output
spaces with large cardinality as the complexity is
O(mN ); however, it is faster to compute at low prob-
ability of error values than Monte Carlo simulations.

Substituting (33) in (29) and (30) provides the SNR
estimate.

4.3 Analysis of NMR

In this section, we present the analysis of NMR under
the soft NMR error model. We have chosen the most
popular voting schemes, majority and median, as our
target of analysis. Analysis of the voters using the
NMR error model has been previously done in [20].
Here we present the analysis using complete statistical
information via the more general soft NMR error
model.

4.3.1 Majority

When presented with a set of N PE outputs Y =
{y1, y2, ..., yN}, a majority voter produces an output
ŷ given by

ŷ = maj(y1, y2, ..., yN ) (38)

where maj(Y ) selects that element of Y which occurs
more than �N/2	 times. In the absence of a majority,
the element with the most occurrences can be chosen
or an error can be flagged.

Each PE produces the correct output yo with a
probability 1 − pei independently of other processes.
As the probability of choosing the correct output can
be given as

∑
vj∈V

P

(
cj(R) >

N

2

∣∣∣∣ vj = yo

)
P (vj = yo) (39)

the error probability of the majority voter becomes:

pe,sys =
∑
vj∈V

rj

�N
2 �∑

k=0

(
N

k

)
(pei)

N−k(1− pei)
k (40)
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4.3.2 Median
When presented with a set of N PE outputs Y =
{y1, y2, ..., yN}, a median voter produces an output ŷ
given by

ŷ = med(y1, y2, ..., yN ) (41)

where med(Y ) selects that element of Y which is the
median of all values. Assuming {y1, y2, ..., yN} are
ordered in increasing order and N is odd, then the
median will be y�N

2 �.
For vj to be the median, N−1

2 outputs need to be
less than vj and the other N−1

2 need to be greater
than vj . Therefore, the probability of median giving
the correct value can be derived as follows:

∑
vj∈V

rjP

⎛
⎝ ∑
∀vk<vj

ck(R) =
N − 1

2

⋂

∑
∀vk>vj

ck(R) =
N − 1

2

∣∣∣∣∣∣ vj = yo

⎞
⎠

=
∑
vj∈V

rj

⎡
⎣1− P

⎛
⎝ ∑
∀vk<vj

ck(R) >
N

2

∣∣∣∣∣∣ vj = yo

⎞
⎠

−P

⎛
⎝ ∑
∀vk>vj

ck(R) >
N

2

∣∣∣∣∣∣ vj = yo

⎞
⎠
⎤
⎦

The error probability is 1 − P (correct) and thus is
given by:

∑
vj∈V

rj

⎡
⎣P

⎛
⎝ ∑
∀vk<vj

ck(R) >
N

2

∣∣∣∣∣∣ vj = yo

⎞
⎠ +

P

⎛
⎝ ∑
∀vk>vj

ck(R) >
N

2

∣∣∣∣∣∣ vj = yo

⎞
⎠
⎤
⎦ (42)

And each term in the square brackets will be the
probability that R has more than N

2 being greater or
less than the correct output yo. Therefore, the error
probability of a median voter is given as:

pe,sys =
∑
vj∈V

rj

⎧⎨
⎩

N∑
k=�N

2 �

(
N

k

)[
pei

j−1∑
l=1

ql

]k

[
1− pei

j−1∑
l=1

ql

]N−k

(43)

+
N∑

k=�N
2 �

(
N

k

)⎡
⎣pei m∑

l=j+1

ql

⎤
⎦
k

(44)

⎡
⎣1− pei

m∑
l=j+1

ql

⎤
⎦
N−k

⎫⎪⎬
⎪⎭ (45)

As is the case with soft NMR, substituting (40) or
(45) in (29) and (30) will give SNR estimates.

4.4 Analysis of ANT

ANT can be viewed as a special case of NMR with
two PEs, a main block (PE-1) and an estimator (PE-
est), each with different error statistics (see Fig. 2), and
the detector chooses among the two PE outputs by
comparing |y1−yest| to a threshold τ . In this analysis,
we will assume the estimation error is −d/2 ≤ eest ≤
d/2, i.e., the estimation error is smaller than hardware
errors.

Considering the error PMF in Fig. 15(b), if τ ≥ 3d
2 ,

then PE-1 will be chosen regardless of PE-est. If τ <
d
2 , then PE-1 is chosen only when PE-1 is error-free
(which is the correct output), else PE-est is chosen.
When d

2 ≤ τ < 3d
2 , pe,sys will depend on the values of

e1 and eest. Thus, pe,sys for ANT can be calculated as:

pe,sys =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pe(1− Peest(0)), when τ < d
2

pe

2

∑
d−τ≤|eest|≤ d

2
Peest(eest), when d

2 ≤ τ < d

pe

2 {1− Peest(0)+∑
0<|eest|≤τ−d Peest(eest)

}
, when d ≤ τ < 3d

2

pe, when τ ≥ 3d
2

(46)
The probability of error of ANT for an arbitrary error
statistics is:

1− P (E1)− P (E2) (47)

where E1 is the event when ŷ = y1 and e1 = 0, and
E2 is the event when ŷ = yest and eest = 0. Thus (47)
becomes:

pe,sys = 1−Pe1(0)
∑

|eest|<τ

Peest(eest)−Peest(0)
∑
|e1|>τ

Pe1(e1)

(48)

4.4.1 Reduced precision redundancy

Reduced precision redundancy (RPR) is a technique
where the estimator uses smaller bit precision to be
able to produce the correct result in a shorter time,
which enables the estimator to be free from timing
errors. However as the precision is reduced, there is a
small estimation error. Assuming the lower bits have
a uniform distribution, the estimation error will also
have a uniform distribution. Thus, in RPR, Peest can
be assumed to be uniform, and its magnitude will
depend on the number of bits by which the precision
was reduced. If the precision was reduced by b-bits,
the estimation error statistics will become:

Peest =
1

2b
(49)
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Fig. 17. Comparison of analytical (dashed) and sim-
ulation (bold) results for an 8-bit multiplier: (a) pe,sys
metric, and (b) SNR metric.

4.5 NMR and Soft NMR Comparison
Subtracting (35) from (40), we obtain:

pe,sys−NMR − pe,sys−softNMR =

�N
2 �∑

k=0

(
N

k

) [
pN−k
e (1− pe)

k

{
1−

(
1

2

)N−k−1
}
−

2
(pe
2

)N

+ 4
(pe
4

)N
]
(50)

As the summand in the summation is always a non-
negative quantity, we see that soft NMR will always
outperform NMR under this error statistics.

4.6 Simulation Results
Monte Carlo simulation is used to compare to the
results obtained from analysis. We show the results
for an 8-bit multiplier. The simulation setup for the
multiplier is the same as in Section 3 (see Fig. 12).
We employed a 6-bit reduced precision version of the
multiplier as an estimator for ANT. Figure 17 shows
that the analysis predicts the simulation results to
within 0.1% for pe,sys and 2 dB for SNR, on average.

5 APPLICATION: DCT-BASED IMAGE COM-
PRESSION

In this section, we compare soft NMR with NMR
in terms of robustness, and energy-efficiency in the
context of a 2D-DCT system. Figure 18 shows the
various 2D-DCT architectures being considered. We
replicate the DCT block and perform voting after the
quantizer. Chen’s algorithm [21] is used for deriving
the DCT architecture and the quantizer (Q) employs
the JPEG quantization table [26]. Only the DCT blocks
are subject to VOS, and hence these are the only
blocks that exhibit errors. All voters are operated at
their critical supply voltage of Vdd−crit = 0.7V to
ensure correct operation. The quantizer, the inverse
quantizer and the inverse DCT (IDCT) are all assumed
to be error-free in order to isolate the effects of DCT
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Fig. 18. DCT-based image compression architecture:
(a) conventional architecture, (b) soft DMR, and (c) soft
TMR.
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Fig. 19. Normalized PSNR and reliability vs. compo-
nent probability of error pei over five test images (bold
lines represent the mean over the five test images):
(a) normalized PSNR vs. pei , and (b) system reliability
(1− pe,sys) vs. pei .

errors. Errors are captured just before the latch at the
DCT outputs in Fig. 18. These errors are indepen-
dent via the use of techniques discussed in 3.3. The
soft voter employs (24), which minimizes pe,sys, and
the majority voter employs (38). One characterization
image was employed to determine the prior and
error statistics, while five test images (I1, I2, I3, I4
and I5) were employed to evaluate performance. The
error-free PSNRs for these images were PSNRI1 =
28.57dB, PSNRI2 = 33.01dB, PSNRI3 = 31.89dB,
PSNRI4 = 32.10dB, and PSNRI5 = 32.16dB.

5.1 Robustness

In order to compare the system performance across
the five images, we plot the normalized PSNR in
Fig. 19(a), where the PSNRs achieved by any tech-
nique for a specific image is normalized with respect
to the error-free PSNR for that image, i.e., the error-
free PSNR is subtracted from the actual PSNR. With
H = Y , Fig. 19(a) shows that, for a wide range of
PSNRs (15dB−30dB), soft TMR can tolerate approxi-
mately 10× higher component probability of error pei
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Fig. 21. Increase in PSNR vs. H for probability based
expansion for image I1 and pe,i = 0.146. Soft TMR and
TMR have |H| = 3.

than TMR at the same PSNR for multiple test images.
Figure 19(b) shows that soft TMR is 2× more robust
than TMR at the same system level reliability. More
interestingly, soft DMR outperforms TMR at all values
of pei (and hence voltages) even though soft DMR has
0.65× the complexity (including voter complexity) of
TMR. This is remarkable as it suggests that soft DMR
is a viable low-complexity(power) alternative to TMR
with no loss in robustness. Thus, for an application
whose main block is extremely complex, instead of
triplicating the system, we are able to duplicate it and
employ a more sophisticated voter to achieve better
performance than TMR.

Figure 20 shows the reconstructed images at the
IDCT output for various techniques. It is clear that
TMR is hardly able to recover from errors while, soft
DMR and soft TMR perform significantly better.

5.2 Hypothesis expansion

Figure 21 plots the normalized PSNR as the cardinal-
ity of H (|H|) is increased. Probability-based hypoth-
esis expansion improves the PSNR of both soft TMR
and soft DMR. The PSNR improvement for soft DMR
is remarkable (approx 10dB) bringing its PSNR on
par with that of soft TMR. This is because probability
based hypothesis expansion estimates and includes
the most probable observations into H, thereby reduc-
ing the difference between the hypothesis sets, and
hence the performance, of soft DMR and soft TMR.
This result also shows that soft NMR is capable of
correcting errors even when all the observed values
(Y) are incorrect.

5.3 Power Savings

Power numbers were obtained via circuit simulations
(HSPICE) of logic blocks, and via CACTI [27] for
memory including leakage power. Figure 22 shows
the total power consumed for a given PSNR. Power
consumption of the DCTs, quantizers and the voters,
i.e., the entire transmitter, were included in these
comparisons. It can be seen that soft TMR achieves
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Fig. 22. Power consumption for TMR, soft DMR and
soft TMR vs. PSNR.

10% to 15% power savings and soft DMR achieves
30% to 40% power savings compared to TMR over a
wide range of PSNRs.

TABLE 3
Voter complexity and power overhead for 8-bit voters

compared to a TMR DCT transmit chain.

Complexity Complexity Power
(transistor count) Overhead Overhead

TMR 432 0.1% 0.07%
Soft DMR 35848 8.2% 0.25%
Soft TMR 64868 14.9% 1.49%

Table 3 shows that the soft voter, though much
more complex than the majority voter, has a very low
power overhead with respect to the DCT transmit
chain. This is primarily because the MAP block in
Fig. 7(b) is activated infrequently and a majority of
the complexity comes from memory which consumes
little power. This indicates that expending computa-
tional resources in exploiting statistics is an effective
way of reducing power.

6 CONCLUSION AND FUTURE WORK

Soft NMR has been shown to improve the robustness
and power efficiency over conventional NMR by ex-
plicit use of error statistics. This has been done by
employing a soft voter that is based on detection tech-
niques. Two detection criteria were explored, mini-
mizing probability of error, and also minimizing mean
squared error. Analysis of soft NMR was performed
to show its benefits over NMR. The accurate results
obtained through analysis shows that it can also be
employed in designing robust systems. Soft NMR
was then applied to a DCT image coding applica-
tion. Simulations in a commercial 45nm, 1.2V , CMOS
process show that soft triple-MR (TMR) provides 10×
improvement in robustness, and 12% power savings
over TMR at a peak signal-to-noise ratio (PSNR) of
20dB. In addition, soft dual-MR (DMR) provides 2×
improvement in robustness, and 35% power savings
over TMR at a PSNR of 20dB. This work opens up a
number of interesting problems to explore including:
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(a) Original Image (b) Error Free (c) With Errors (d) TMR (e) Soft DMR (f) Soft TMR

Fig. 20. Reconstructed image at IDCT output with Vdd = 0.95V and pei = 14.63%: (a) original image, (b) error-
free conventional with no errors (PSNR = 33dB), (c) conventional with VOS errors (PSNR = 6.15dB), (d) TMR
(PSNR = 7.88dB), (e) Soft DMR (PSNR = 14.09dB), and (f) Soft TMR (PSNR = 22.25dB).

a) algorithms of approximating the optimal bound, b)
using time and space correlation statistics, c) methods
of efficiently storing the statistical information and the
impact of finite precision, and d) methods of obtaining
the statistical information.
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