ABSTRACT

With the ever growing popularity of deep learning, the tremendous complexity of deep neural networks is becoming problematic when one considers inference on resource constrained platforms. Binary networks have emerged as a potential solution, however, they exhibit a fundamental limitation in realizing gradient-based learning as their activations are non-differentiable. Current work has so far relied on approximating gradients in order to use the back-propagation algorithm via the straight through estimator (STE). Such approximations harm the quality of the training procedure causing a noticeable gap in accuracy between binary neural networks and their full precision baselines. We present a novel method to train binary activated neural networks using true gradient-based learning. Our idea is motivated by the similarities between clipping and binary activation functions. We show that our method has minimal accuracy degradation with respect to the full precision baseline. Finally, we test our method on three benchmarking datasets: MNIST, CIFAR-10, and SVHN. For each benchmark, we show that continuous binarization using true gradient-based learning achieves an accuracy within 1.5% of the floating-point baseline, as compared to accuracy drops as high as 6% when training the same binary activated network using the STE.

Index Terms— deep learning, binary neural networks, activation functions

1. INTRODUCTION

Deep neural networks are becoming the de facto predictive models used in many machine learning tasks. Their popularity is the result of numerous victories deep learning has enjoyed in the past decade. Most notably, with AlexNet [1] winning the 2012 ImageNet Large Scale Visual Recognition challenge, extensive research efforts in the area followed and culminated with machines outperforming humans in recognition tasks [2]. However, this outstanding representational power comes at the price of very high complexity. Some of these networks require around 1 billion multiply-accumulates (MACs) [3]. It is in fact not uncommon to find networks with over 100 million parameters [4] and over 1000 layers [5]. Such high complexity makes these models hard to train, but most importantly, their deployment on resource-constrained platforms, such as ASICs, FPGAs, and microcontrollers, becomes problematic.

1.1. Related work

The importance of reducing the complexity of deep learning systems is well appreciated today. One approach is to optimize the structure of a neural network itself, such as by pruning [6], where weak connections are deleted and the reduced network is retrained. Dominant layers can also be decomposed into a cascade of smaller layers with an overall lesser complexity [7]. Taking advantage of the sparsity also enables efficient implementation via zero-skipping [3].

An orthogonal approach is to consider reduced precision neural networks. This can be done in one of two ways: quantizing pre-trained networks, or directly training in low precision. The first option is justified by the inherent robustness of neural networks suggesting that moderate quantization should not be catastrophic. This has led to interesting analytical investigations such as determining the correspondence between precision and signal-to-quantization-noise ratio [8]. A better understanding of accuracy in the presence of fixed-point quantization was presented in [9]. This study led to the discovery of an interesting trade-off between weight and activation precisions.

Directly training in low precision has also seen many advances. It was shown that training 16-bit fixed-point networks is possible using stochastic rounding [10]. It was later realized that training binary weighted neural networks, such as BinaryConnect [11], is possible provided a high precision representation of the weights is maintained during the training [12]. A natural extension is to consider activation binarization such as BinaryNet [13], XNOR-Net [14], and DoReFa-Net [15]. A close investigation of these works’ reported performances reveals failure in achieving state-of-the-art accuracy. For instance, the accuracy gap between BinaryNet and BinaryConnect is slightly over 3% (on the CIFAR-10) dataset, despite using numerous optimization tricks such as stochastic rounding, shift-based ADAMAX, and early model selection. These shortcomings may arguably be attributed to the inability to use gradient-based learning because of the use of the non-differentiable binary activation function. Instead, these works have relied on gradient approximations via the straight through estimator (STE) [16] to enable back-propagation.
The STE estimates the gradient of the binary activation function by replacing it with the identity function as shown in Fig. 1. Effectively, the back-propagation procedure “sees through” the binary activation function. The STE is justified in the context of stochastic gradient descent (SGD) because the computed gradient is an approximation to the true gradient with respect to the loss function being minimized. However, in the case of SGD, almost half a century of research has led to a well-established theory with performance guarantees [17]. In contrast, the STE method still lacks a complete analytical basis.

2.1. Contributions

We propose a new method to train binary activated networks. Instead of relying on gradient approximation, our method leverages the true SGD algorithm. We analytically demonstrate that our method guarantees minimal accuracy degradation with respect to the full precision baseline. We present numerical experiments that show successful training of binary activated networks on the MNIST [18], CIFAR-10 [19], and SVHN [20] datasets with accuracies within 1% of binary activated networks on the MNIST, CIFAR-10.

We also train the same binary activated networks using the STE and observe accuracy drops as high as 6% justifying the superiority of our proposed method. Thus, the complexity benefits of binary activated networks are presented with minimal loss in accuracy over full precision networks.

The rest of this paper is organized as follows. Section 2 describes our proposed continuous binarization method and includes our analytical justification. Numerical results are reported in Section 3. We conclude our paper in Section 4.

2. PROPOSED METHOD: CONTINUOUS BINARIZATION

This section describes our proposed continuous binarization technique and its analytical justification.

2.1. Principle

Our main motivation is to employ true gradient-based learning for binary activated networks. Consequently, the use of the STE is not suitable. Instead, we replace the binary activation by a continuous, piecewise differentiable function. More specifically, we consider a scaled binary activation function (SBAF) of the form

$$\sigma(x) = \alpha \times \mathbb{1}_{x > 0}$$

where α is a scale parameter and $\mathbb{1}$ is the indicator function.

We also consider a parametrized clipping function (PCF) of the form

$$\sigma(x) = \text{clip}(\frac{x}{m} + \frac{\alpha}{2}, 0, \alpha) = \min(\max(\frac{x}{m} + \frac{\alpha}{2}, 0), \alpha)$$

(1)

where m and α are the slope and scale parameters, respectively. Observe that, for a small value of m, the PCF has a steeper slope and approaches the SBAF as shown in Fig. 2 for $\alpha = 2$. This observation is the key insight our method relies on. We propose to train a neural network using the PCF as the activation function and learn its parameter m while constraining it to be small. This is done by regularizing m using the L_2 or L_1 regularization schemes. When m is small enough, we replace the PCF by the SBAF to obtain the final binary activated network. Thus, our procedure uses SGD during training, but generates a binary activated network for inference.

2.2. Procedure

The proposed continuous binarization procedure is provided in Algorithm 1. An important caveat is that training the slope parameters of all layers simultaneously might lead to a bottleneck effect in the backward pass. This is because the gradients flowing through the PCF become sparse as the slope becomes steep, causing convergence to slow down or even stop. Hence, we learn the slope parameter m in stages, one layer at a time, where at stage l, all layers up to layer $l - 1$ are binary activated and have frozen weights and only the slope parameter m at layer l is learned.

As the parameter m needs to be regularized, e.g. via L_1 or L_2 regularizations, the usual caveats apply to the choice
Algorithm 1 Continuous Binarization procedure: L is the number of layers, $I^{(l)}$ is the number of iterations for which the PCF parameters of layer l are trained, μ is the learning rate, and $\lambda^{(l)}$ is the slope regularization coefficient at layer l.

for $l = 1$ to L do
 for $i = 1$ to $I^{(l)}$ do
 (inputs, labels) \leftarrow getMiniBatch()
 hidden \leftarrow inputs
 \triangleright Feedforward pass:
 for $l = 1$ to L do
 $W \leftarrow$ getLayerWeights(j)
 preActivation \leftarrow computePreActivation(hidden, W, l)
 if $j < l$ then
 hidden \leftarrow SBAF(preActivation, l)
 end if
 end for
 if $l \leq j < L$ then
 hidden \leftarrow PCF(preActivation, j)
 end if
 if $j = L$ then
 hidden \leftarrow outputActivation(preActivation)
 \triangleright Generally a softmax
 end if
 end for
 predicted \leftarrow argmax(hidden)
 C \leftarrow costFunction(predicted, labels)
 \triangleright Generally a cross entropy
 \triangleright Backward pass and updates:
 for $j = l$ to L do
 $W \leftarrow$ getLayerWeights(j)
 $G \leftarrow$ computeGradients(C, W)
 $W \leftarrow W - \mu G$
 end for
 $m \leftarrow$ getPCFSlope(l)
 $\alpha \leftarrow$ getPCFScale(l)
 $g_m \leftarrow$ computeGradient($C + \text{regularizer}(m, \lambda^{(l)}), m$)
 $g_\alpha \leftarrow$ computeGradient(C, α)
 $m \leftarrow m - \mu g_m$
 $\alpha \leftarrow \alpha - \mu g_\alpha$
 end for

end for

of the regularization coefficient λ. We identify three types of regularization in a network: 1) activations preceding fully connected layers: λ_1, 2) activations preceding convolutional layers: λ_2, and 3) activations preceding pooling layers: λ_3. A good strategy is to choose $\lambda_1 < \lambda_2 < \lambda_3$.

2.3. Analytical Justification

Given a network, let us denote by $N^{(l)}$ the obtained network using the SBAF for all layers until and including the l-th one and the PCF for all final layers past the l-th one. Consequently, $N^{(0)}$ is the original full precision network using the PCF at all layers and $N^{(L-1)}$ is the final binary activated network. Note that at the start of stage l ($l \geq 2$) of the continuous binarization procedure, we replace $N^{(l-1)}$ by $N^{(l)}$ after having regularized the parameter m at layer l.

We first show that the mean squared error (MSE) of approximating the PCF by the SBAF decreases linearly in m. Note that from (1), the intercepts with the lines $y = 0$ and $y = \alpha$ of the clipping function are at $x = -\frac{m\alpha}{2}$ and $x = \frac{m\alpha}{2}$, respectively. We assume the pessimistic scenario where the input x is uniformly distributed in $[-\frac{m\alpha}{2}, \frac{m\alpha}{2}]$. Then, the MSE between PCF and SBAF activations is computed as follows:

$$MSE = k \int_{-\frac{m\alpha}{2}}^{\frac{m\alpha}{2}} \left(\frac{x}{m} + \frac{\alpha}{2} - \alpha \cdot 1_{x>0} \right)^2 dx = c \cdot m$$

where k is a normalization constant and $c = \frac{k^3}{16}$ is a constant. Hence, we establish that as m decreases, the perturbations due to switching activation functions at layer l decrease linearly in the mean squared sense.

Next, for a given input, let a_o and a_p be the feature vectors at layer l of $N^{(l-1)}$ and $N^{(l)}$, respectively. We will show that there is no mismatch between the predicted labels \hat{y}_o and \hat{y}_p of $N^{(l-1)}$ and $N^{(l)}$, respectively, provided the perturbation vector at layer l, $q_{in} = a_p - a_o$, has a bounded magnitude. To do so, we use the output re-ordering argument similar to that in [9]. There is a mismatch when $\hat{y}_o = i, \hat{y}_p = j$, and $i \neq j$, where i, j are predicted classes. But this event occurs only if $f_i(a_o) > f_j(a_o)$ and $f_i(a_p) < f_j(a_p)$ where f_i, f_j are the soft outputs at indexes i, j, respectively. For small perturbations, we can use a first order Taylor approximation as in [9] to show:

$$f_i(a_p) < f_j(a_p) \Rightarrow f_i(a_o + q_{in}) < f_j(a_o + q_{in})$$

$$\Rightarrow f_i(a_o) - f_j(a_o) < ||q_{in}|| \parallel \nabla_{a_o} f_j(a_o) - \nabla_{a_o} f_i(a_o)\parallel$$

where we used the Cauchy-Schwarz inequality. Therefore, by the contrapositive, we have no mismatch if

$$||q_{in}|| < \min_{j=1\ldots M, j \neq i} \parallel f_i(a_o) - f_j(a_o)\parallel$$

For an M-class classification problem, we may extend the condition in (2) as follows:

$$||q_{in}|| < \min_{j=1\ldots M, j \neq i} \parallel \nabla_{a_o} f_j(a_o) - \nabla_{a_o} f_i(a_o)\parallel$$

Thus, we establish an upper bound on the perturbation vector magnitude to avoid mismatch. But this magnitude decreases linearly as a function of m in the mean square sense. Hence, we argue that replacing the PCF by the SBAF at layer l has minimal effect on accuracy for small enough values of m.

3. NUMERICAL RESULTS

In order to evaluate our proposed continuous binarization method, we utilize three datasets: MNIST [18], CIFAR-10 [19], and SVHN [20]. For each, we consider a unique network inspired by BinaryNet [13], defined below:

- MNIST: A multi-layer perceptron with architecture $784 \to 2048 \to 2048 \to 2048 \to 10$.
- CIFAR-10: A convolutional neural network with architecture $128C3 \to 128C3 \to MP2 \to 256C3 \to 256C3 \to MP2 \to 512C3 \to 512C3 \to 1024FC \to 1024FC \to 10$.

The network corresponding to each dataset is trained in three ways: 1) full-precision baseline using the clipping activation function, 2) binarization via STE [16], and 3) using the proposed continuous binarization. All results are summarized in Table 1.

Figure 3 illustrates the outcome of the continuous binarization procedure for each dataset. Plotted is the test error as a function of training epoch for $N^{(i)}$ and $N^{(L-1)}$. The networks are pre-trained with $m = 0.5$ and $\alpha = 2$ for all layers which is why the test error for $N^{(i)}$ has good initial conditions. Recall that $N^{(i)}$ uses the SBAF for all layers up to the l-th one and the PCF for all other layers, whereas $N^{(L-1)}$ uses only the SBAF. As l is progressively incremented in stages, the number of binary activated layers in $N^{(i)}$ is also incremented until all the network is binary activated and $N^{(i)}$ is identical to $N^{(L-1)}$, making both curves meet.

For the MNIST dataset, the full precision baseline is obtained using SGD and achieves 1.45% test error after 500 epochs. The STE implementation is obtained by training with Vanilla Adam [21] (we observed significant improvements over SGD). All network configurations are otherwise identical to the baseline. The test error obtained is 1.54% after 500 epochs. For continuous binarization, only L_2 regularization was used on m with $\lambda = 1$ for all layers. The first layer is trained for 200 epochs, and all other layers are trained for 100 epochs each. The test error at the end of the last training epoch we obtain is 1.27%.

For the CIFAR-10 dataset, the baseline network is trained using SGD and achieves a test error of 9.04% using clipping after 500 epochs. The STE implementation is trained using Vanilla Adam and with the same configurations as the baseline otherwise. The test error obtained is 14.80% after 500 epochs. During continuous binarization, Vanilla Adam is used instead of SGD. This slightly negated the warm up effect due to the change in optimization technique. both L_2 and L_1 regularizations were used with coefficients $\lambda_1 = 0.001$, $\lambda_2 = 0.01$, $\lambda_3 = 0.1$. Each layer is trained for 50 epochs and the final test error obtained is 10.41%.

For the SVHN dataset, the baseline network is trained using SGD and achieves a test error of 2.53% using clipping after 200 epochs. The STE implementation is trained using Vanilla Adam and with the same configurations as our baseline otherwise. The test error obtained is 4.05% after 200 epochs. During continuous binarization, the same procedure as that for CIFAR-10 is followed with a few modifications: each layer is trained for 20 epochs instead of 50 because this dataset is much larger; and only L_2 regularization is used for all layers past the fifth one. We obtain a final test error of 3.20%.

In summary, for each of the three datasets, the test error using continuous binarization is within 1.5% of the full precision baseline. However, for binarization using the STE, the accuracy drop reaches up to 6%. This demonstrates the superiority of our proposed training procedure for binary activated networks.

4. CONCLUSION

We have presented a novel method for binarizing the activations of deep neural networks. We have presented a theoretical justification for our method. To demonstrate the validity of our approach, we have tested it on three deep learning benchmarks.

Future work includes further experimentations on larger models and datasets, combining the proposed activation binarization to weight binarization, and extension to the multi-bit activation.
REFERENCES

