
LOW-POWER DISTRIBUTED ARITHMETIC ARCHITECTURES USING
NON-UNIFORM MEMORY PARTITIONING*

Sumant Ramprasada, Naresh R. Shanbhagb, and Ibrahim N . Haj'
a Dept. of Computer Science, bDept. of Electrical and Computer Engineering,

Coordinated Science Laboratory,
University of Illinois a t Urbana-Champaign,

Urbana IL USA 61801.
{ ramprasa, shanbhag, hajj} @uivlsi.csl.uiuc.edu

A B S T R A C T

In this paper, we present a low-power Distributed Arith-
metic (DA) architecture. In a DA architecture, a mem-
ory is employed to store linear combinations of coefficients.
The probability distribution of addresses t o the memory is
usually not uniform because of temporal correlation in the
input. We present a rule governing this probability distri-
bution and use it to partition the memory such that the
most frequently accessed locations are stored in the small-
est memory. Power dissipation is reduced because accesses
to smaller memories dissipate less power. Experimental re-
sults with an 8-tap filter with 8 bits of data precision result
in a 32% power reduction in the memory. A 28% power re-
duction was obtained by just detecting accesses to the two
most frequently accessed locations (Ox00 and OxFF), which
is a strong argument for using the techniques proposed in
this paper.

1. I N T R O D U C T I O N

A common operation in digital signal processing (DSP) is
computing the inner product of two vectors. Distributed
arithmetic (DA) [8] has been used to compute the inner
product because of the efficiency of DA architectures. In a
DA architecture, the multiplier is eliminated by employing
a memory to store linear combinations of the coefficients.
Figure 1 shows one possible DA-based implementation of
a 4-tap FIR filter. The memory addresses are formed by
grouping bits in the same bit position from successive input
samples. The input is shifted in one bit a t a time into
the register containing z(n) . The output is available once
every B clocks (where B is the input precision) from the
accumulator. The size of the memory for a k-tap filter is
2k words. It is possible to reduce the memory size to Zk-'
words by employing extra logic [8]. In this paper, we will
concentrate on the architecture in Figure 1, though all our
techniques are applicable to the architecture with memory
of size 2k-' words.

In a DA-based filter, power is dissipated in the shift reg-
ister, memory, adder, shifter, and the accumulator. Since
the memory size increases exponentially with the number
of taps and the power dissipation in a memory increases
with its size, a considerable amount of the total power dis-

~~~ 

'THIS WORK WAS SUPPORTED BY DARPA CON- 
TRACT DABT63-97-C-0025, NSF CAREER AWARD MIP- 
9623737, AND NSF AWARD MIP 97-10235. 

sipation in the filter occurs in the memory. This is partic- 
ularly true as the number of taps increases. In this paper, 

16 word memory - 
0 
1: 
2: 
3: 
4 
5: 
6: 
I: 
8: 
9: 

1 0  
11: 
12: 
13: 
14: 
15: 

x(n-3) 

0 
b3 
b2 
b2ib3 
bl 
b l i b 3  
b l ib2  
bl+b2+b3 
bO 
bOib3 
bOib2 
bOib2 + b3 
bO+bl 
bO+bl+b3 
bO+bl +b2 
bO+bl+b2i 

AddSub rQh 
t 

Figure 1. DA-based i m p l e m e n t a t i o n  of a 4-tap FIR 
fi l ter  
we present an architecture to reduce the power dissipation 
in the memory. The proposed architecture exploits the fact 
that the input to  a filter is typically correlated, due to which 
the probability distribution of memory addresses is not uni- 
form. We present a rule governing this distribution and use 
it to  partition the memory so that the most frequently ac- 
cessed locations are stored in a small memory and use a 
larger memory to  store the remaining data. Power dissi- 
pation is reduced because accesses to  the smaller memory 
dissipate less power. Experimental results indicate a reduc- 
tion in power dissipation in the memory of up to  32% for 
an 8-tap filter with 8 bits of data  precision. 

The basic idea in our approach is similar to  that of caches 
in general purpose microprocessors, where a small, fast, and 
lower-power memory is used to  store the most frequently 
accessed data  [a]. A similar idea, termed precomputation 
[l], has also been employed in logic synthesis, where a com- 
putation is divided into two parts, with the most frequent 
computations being done in the first part, which consumes 
less power. In [3], the non-uniform probability distribu- 
tion of variable-length codes is employed to  partition the 
table used in variable-length decoding so that the most fre- 
quently accessed data  are stored in a small memory. To our 
knowledge, memory partitioning has not been applied to  
DA architectures, though there are other approaches to re- 
ducing power dissipation specifically in such architectures. 
For instance, in [5], the nega-binary code is employed to 
reduce the transitions in the shift register, whereas in [7], 
the shift register is eliminated by moving a pointer to the 
data  instead of moving the data itself. 

0-1 '803-5471 -0/99/$10.0001999 IEEE 

111-470 

mailto:uivlsi.csl.uiuc.edu


The rest of this paper is organized as follows. In section 
11, we present our low-power DA architecture and in sec- 
tion I11 we provide experimental results for the reduction 
in power dissipation. 

0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

2. LOW-POWER DA ARCHITECTURE 

In this section, we present our low-power DA architecture. 
Since the architecture exploits the skewed probability dis- 
tribution of memory addresses, we first describe this distri- 
bution followed by the low power architecture. 

2.1. Probability distribution of memory addresses 
In a DA based filter, the memory addresses are formed by 
grouping bits in the same bit position from successive in- 
put samples (see Figure 1). The transition activity of bits 
in typical audio, video, and communications channel da ta  
is shown in Figure 2, from which, we see that the less sig- 
nificant bits (by less significant bits, we mean bits close to  
and including the least significant bit) in a typical input 
sample have a transition activity close to  0.5 [4,6]. Hence, 

.. 

.. 

-' 

- 
- 

- 
- 
- 

0.55 r I 

No. taps = 8, data precision = 8 - - 
No. taps = 8, data precision = 16 

= - ----ii -._.. t % 

r 5 p 
0 
r 
E 
c 

I 
6 8 10 12 14 16 

B i  

Figure 2. Transition activity versus bit position 

addresses formed b:y grouping bits in the less significant bit 
positions are uniformly distributed. From Figure 2, we also 
see that  the more significant bits (by more significant bits, 
we mean the bits close to  and including the most signifi- 
cant bit) in a typical input sample have a transition activ- 
ity significantly lesi3 than 0.5. Hence, addresses generated 
from a more significant bit position have the characteristic 
that those which have fewer transitions within that  address 
are more probable. For instance, assuming 8-bit addresses, 
Ox00 (00000000) and OxFF (11111111) are the most fre- 
quent since there are no transitions within those addresses. 
The addresses 0x55 (01010101) and OxAA (10101010) are 
the least frequent since they have the maximum number of 
seven transitions. Figure 3 shows the probability of occur- 
rence of addresses in an 8 tap filter. The inputs are 8-bit 
video data  and 16-bit audio data. The addresses are ar- 
ranged in order of increasing number of transitions on the 
z-axis. We present the following rule which we have found 
to  hold for all input data  we have examined and which we 
will use in our low-power architecture. 

Rule I: The probability of occurrence of an address in 
a DA based filter with correlated input decreases as the 
number of transitions within that address increases. 

0.18 ,I , rl 

............................. 
_. 

0 '  
0 Oxf8  Ox5a 

Address (in order of increasing number of transitions) 

Figure 3. Variation in probability with transitions 
in an address 

2.2. Low Power DA architecture 
In this subsection, we present our low-power DA archi- 
tecture. We place the most frequently accessed locations 
(which are also addresses with fewer transitions) in a small 
memory since accessing a small memory dissipates less 
power. Let M be the original memory containing all pos- 
sible addresses. We partition M into 1 memories M I ,  M2, 

..., M I  with M I  containing the most frequently accessed 
locations, MZ the next most frequently accessed locations, 
and so on. Let S,  be the size of memory M, ,  E H %  be the en- 
ergy dissipated when there is a hit in M , ,  Eoverhead be the 
energy dissipated while decoding which memory to access, 
and P T ,  to be the probability of a hit in M,. The energy 
dissipated during a memory access is given by, 

Energy = 2 PT,EH, + Eoverhead (1) 
2 = 1  

Figure 4 shows the proposed low-power DA architecture 
with two memories (i.e., 1 = 2) .  The memory select logic 

Ll I I I:. 'nahle 

n A LfYM LOGIC 

W 

Figure 4. Multiple memory architecture 
in Figure 4 decides which memory will be accessed. In Fig- 
ure 4, this action is performed in the previous clock cycle 
in order that it not increase the cycle time. To make the 
memory select logic efficient, we use Rule 1 by placing all 
addresses with j or fewer transitions in the smaller memory 
(where j is determined experimentally). The memory select 

111-47 1 



logic outputs 0 or 1 depending on whether the number of 
transitions within the address is greater than, less than or 
equal to  j ,  respectively. The memory select logic for an 8- 
bit address is shown in Figure 5 ,  where a row of exclusive-or 
gates convert transitions within an address to  l’s, followed 
by a tree of 1-bit full adders to  count the number of l’s, 
which is then input to a comparator t o  compare with j .  
The output of the comparator is used to  select the memory. 

D 
D 
R 
R 
E 
S 
S 

Figure 5. Memory select logic 

Figure 6 shows the variation of P r l  with S1 for filters 
with 4, 8, and 12 taps. The inputs are 8-bit video data  
and 16-bit audio data. For an 8-tap filter processing 8-bit 
video data, 10% of the addresses account for over half the 
accesses. The variation of hit probability P r l  with memory 
size S1 for the architecture containing memory of size 2k-1 
words is similar to  Figure 6. 

- 
a 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0 

No. taps = 4, data precision = 8 - 
No. taps = 8, data precision = 8 - 

No. taps = 12, data precision = 8 ..-.- 
No. taps = 4, data precision = 16 ...-.... - 
No. taps = 8, data precision = 16 

No. taps = 12, data precision = 16 - 

I I I I I I I I I 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
S-1 (as fraction of the size of M) 

Figure 6. Prl vs. SI 

2.2.1.  Memory bypass architecture 
If SI is small (< 8), then it is more efficient to provide 

the elements of M1 directly to  a multiplexer rather than 
employing a separate memory. This is shown in Figure 7, 
where we have logic to  detect the accesses to M1 and pro- 
vide the data  a t  those addresses directly. From Rule 1, we 

see that the logic to  detect occurrence in M1 basically de- 
tects the addresses with the fewest transitions (for instance, 
00000000, 11111111, 11111100, and so on). It is possible t o  
combine the memory bypass architecture with the multiple 
memory architecture. In the specific example of Figure 7, 
M1 consists of the locations 0000 and 1111. 

n 

I 1 1 1 1  7 

Figure 7. Memory bypass architecture to reduce 
memory accesses 

3. EXPERIMENTAL RESULTS 
In this section, we present experimental results on the re- 
duction in power dissipation in the memory. We do not in- 
clude the rest of the filter (i.e., shift registers, adder, shifter, 
and accumulator) since our techniques reduce the power dis- 
sipation in the memory and that in the rest of the filter is 
unchanged. 

We assumed the memory is implemented as a ROM and 
estimated its energy dissipation per access as, 

where V d d  is the supply voltage and CT is the average ca- 
pacitance switched during a single access. We used the 
following formula from [4] to  estimate CT,  

CT = Co+CiN12” $ C ~ P O N ~ ~ ” + C ~ P O N ~ + C ~ N ~ ,  

where, 

0 CO, C1, Cz , C3, and are empirically determined ca- 
pacitive coefficients that depend on the exact circuitry 
and technology used by the ROM (the values of the 
coefficients used in this paper are shown in Table l ) ,  

0 N I  is the number of address bits (From Figure 1, this 
is equal to  the number of taps in the filter), 

PO is the probability of a 1 in the data  stored in the 
ROM (assumed to  be 0.5 in our calculations), and 

0 N o  is the number of bits in the output word. Since the 
memory stores linear combinations of coefficients, N o ,  
for our purposes, is the sum of the coefficient bit-width 
(assumed to  be 8) and log, NI. 

We used the memory bypass architecture if S1 was less 
than 9 and the multiple memory architecture for larger val- 
ues of SI. An 8-tap filter was used in the experiment, due to  

111-472 



Table 1. Capacitive coefficients for 

moefficient I Value (pF) I 

0.003092 
0.302080 
0.343750 

which the size of the memory in the original 

a ROM 

filter was 256 
words. The basic unit in the additional logic to detect mem- 
bership in M I  in Figure 7 is an 8-input NOR gate, which 
was estimated, using SPICE, to  have an average switched 
capacitance of 0.1 5pF. The average switched capacitance 
in the memory select logic in Figure 4 was estimated, also 
using SPICE, to biz 0.64pF for an 8-bit address. In Figure 
8, we plot the reduction in power dissipation over an un- 
partitioned memory. In order to  determine how much of 
the reduction is due to partitioning and how much due to 
the skewed address distribution, we also plot the reduction 
in power dissipation over a partitioned memory assuming 
uniform distribution of addresses. From Figure 8, we see 
that for 8-bit video data, the maximum reduction of 32% 
is obtained by the memory bypass architecture when SI is 
8 and most of this reduction is due to the skewed address 
distribution. From Figure 8 we also see that ,  for 8-bit data ,  
we can obtain a 28% reduction in power in the memory 
just by detecting the 2 most common addresses, which are 
Ox00 and OxFF. This is a powerful argument for using the 
techniques presented in this paper. From Figure 8 ,  we see 
that for 16 bit audio data, the maximum reduction of 18% 
is obtained by a multiple memory architecture when the 
sizes of M I  and Mz are both equal to 128 and most of this 
reduction is due to’ the partitioning of memory. 

_“ . . . . . . . . . 

0 50 100 150 200 250 300 
s-1 

Figure 8. Power savings vs. SI 

4. CONCLUSION 
In this paper, we have presented a low-power filter using 
distributed arithmetic, in which, we exploit the skewed dis- 
tribution of addresses to the memory by partitioning it so 
that the most frequently accessed locations are stored in 
a small memory. Power dissipation is reduced because ac- 
cesses to  a small memory dissipate less power. Simulation 

results with 8-bit input data  and an 8-tap filter indicate a 
reduction in power dissipation in the memory of up to 32%. 

REFERENCES 

[I] M. Alidina, J. Monterio, S. Devadas, A. Ghosh, and 
M. Papaefthymiou, “Precomputation-based sequential 
logic optimization for low-power,” IEEE Transactions 
on Very Large Scale Integration (VLSI)  Systems, vol. 
2, no. 4 ,  pp. 426-436, December 1994. 

[a] N. Bellas, I.  N. Hajj, C.  D. Polychronopoulos, and G. 
Stamoulis, “Architectural and Compiler Support for 
Energy Reduction in the Memory Hierarchy of High- 
Performance Microprocessors,” International Sympo- 
sium on Low Power Electronics and Design, pp. 70-75, 
Monterey CA, August 10-12 1998. 

[3] S. Cho, T. Xanthopoulos, and A. P. Chandrakasan, 
“An Ultra Low Power Variable Length Decoder for 
MPEG-2 Exploiting Codeword Distribution,” IEEE 
Custom Integrated Circuits Conference, pp. 177-180, 
Santa Clara CA, May 11-14 1998. 

[4] P. E. Landman and J. M. Rabaey, “Activity-sensitive 
architectural power analysis,” IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Sys- 
tems, vol. 15, no. 6, pp. 571-587, June 1996. 

[5] M. Mehendale, A. Sinha, and S. D. Sherlekar, “Low 
Power Realization of FIR Filters Implemented Using 
Distributed Arithmetic,” Asia and South Pacific De- 
sign Automation Conference, pp. 151-156, Yokohama 
Japan, February 10-13 1998. 

[6] S. Ramprasad, N. R. Shanbhag, and I. N. Hajj, 
“Analytical Estimation of Signal Transition Activity 
from Word-Level Statistics,” IEEE Transactions on 
Computer-Aided Design of Integrated Circuits and Sys- 
tems, vol. 16, no. 7, pp. 718-733, July 1997. 

[7] N. Tan, S. Eriksson, and L. Wanhammar, “A Power- 
Saving Technique for Bit-Serial DSP ASICs,” Interna- 
tional Symposium on Circuits and Systems, vol. 4, pp. 
51-54, London England, May 30 - June 2 1994. 

[8] S. A. White, “Applications of Distributed Arithmetic 
to  Digital Signal Processing: A Tutorial Review,” 
IEEE A S S P  Magazine, pp. 4-19, July 1989. 

111-473 


