
SWIPE: Enhancing Robustness of ReRAM Crossbars for
In-memory Computing

Sujan K. Gonugondla, Ameya D. Patil, Naresh R. Shanbhag
(gonugon2,adpatil2,shanbhag)@illinois.edu

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

ABSTRACT
Crossbar-based in-memory architectures have emerged as an at-
tractive platform for energy-efficient realization of deep neural
networks (DNNs). A key challenge in such architectures is achiev-
ing accurate and efficient writes due to the presence of bitcell con-
ductance variations. In this paper, we propose the Single-Write
In-memory Program-vErify (SWIPE) method that achieves high
accuracy writes for crossbar-based in-memory architectures at 5×-
to-10× lower cost than standard program-verify methods. SWIPE
leverages the bit-sliced attribute of crossbar-based in-memory ar-
chitectures and the statistics of conductance variations to compen-
sate for device non-idealities. Using SWIPE to write into ReRAM
crossbar allows for a 2× (CIFAR-10) and 3× (MNIST) increase in
storage density with < 1% loss in DNN accuracy. In particular,
SWIPE compensates for 4.8×-to-7.7× higher conductance varia-
tions. Furthermore, SWIPE can be augmented with injection-based
training methods in order to achieve even greater enhancements
in robustness.

KEYWORDS
resistive crossbars, in-memory, neural networks, ReRAM, crossbars,
variations, error correction, compensation, neural networks

ACM Reference Format:
Sujan K. Gonugondla, Ameya D. Patil, Naresh R. Shanbhag. 2020. SWIPE:
Enhancing Robustness of ReRAM Crossbars for In-memory Computing. In
IEEE/ACM International Conference on Computer-Aided Design (ICCAD ’20),
November 2–5, 2020, Virtual Event, USA. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3400302.3415642

1 INTRODUCTION
A growing number of applications require efficient implementa-
tions of machine learning algorithms, especially on Edge devices.
Deep neural networks (DNNs) have evolved into the state-of-the-art
approach for machine learning tasks. However, realizing computa-
tionally intensive machine learning (ML) algorithms such as DNNs
under stringent constraints on energy, latency, and form-factor is a
formidable challenge.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICCAD ’20, November 2–5, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8026-3/20/11. . . $15.00
https://doi.org/10.1145/3400302.3415642

In conventional von Neumann architectures, the energy and
latency cost of realizing ML algorithms is dominated by memory
accesses [9]. In-memory architectures have emerged as an attrac-
tive platform for such applications due to their energy-efficiency
and high throughput. In particular, architectures that employ non-
volatile resistive memory-based crossbars such as [3, 6, 14] have
gained popularity due to the large storage density and realizing
matrix-vector multiplications (MVMs) which are ubiquitous in ma-
chine learning applications.

Despite their benefits, crossbar architectures are highly suscepti-
ble to device and circuit non-idealities. For example, the achievable
inference accuracy of crossbar architectures is limited by IR drop,
device non-linearity, thermal noise, process variations, stuck-at-
faults, write noise, and limited device endurance. A number of
works have addressed these challenges such as [8] (IR drop), [19]
(device variations), and [13] (conductance variations). Recently, on-
chip training methods have been proposed [16] to minimize the
impact of die-specific variations.

Device variability in crossbar memories stems primarily from
spatial variations and cycle-to-cycle (C2C) variations (write noise).
The impact of spatial variations is die-specific and can be com-
pensated for post-fabrication via on-chip learning [16] methods.
However, these methods are expensive and can only be employed
if the memory writes are infrequent and they do not address C2C
variations which occur in every write cycle. Alternatively, noise
injection-based one-time offline training methods [8, 13, 19] deter-
mine an averaged set of network parameters for an ensemble of
dies thereby avoiding the cost of on-chip learning. However, such
methods incur a significant loss in inference accuracy as compared
to on-chip training methods. Numerous methods have also focused
on strategically restructuring the DNN weights into the array in
order to mitigate effects of line resistance [1, 11], improve energy
efficiency [4], and improve data reuse [20]. However, the methods
are network-specific and difficult to implement on-chip.

Today program-verify methods [2, 5, 7, 10] are the predominant
approach to address C2C variations due to their high write accu-
racy. However, these techniques require multiple read and program
iterations each time the crossbar array is written into. Furthermore,
such methods can write only a single bitcell of a crossbar at a time
[7] thereby incurring a high energy and latency overhead. These
overheads limit the energy efficiency and latency of in-memory
DNN accelerators that employ crossbars [6, 14] especially when
realizing complex networks. Thus, there is a compelling need for
techniques that achieve the high write accuracy of program-verify
methods while minimizing their energy and latency overheads.

In this paper, we propose the Single-Write In-memory Program-
vErify (SWIPE) method for in-memory computing applications that

1

https://doi.org/10.1145/3400302.3415642
https://doi.org/10.1145/3400302.3415642

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujan K. Gonugondla, Ameya D. Patil, Naresh R. Shanbhag

s

𝑥"

𝑥#
𝑥$

𝑥%

MSB LSB

‘+’ve

𝑦"

‘-’ve ‘+’ve ‘-’ve𝐁𝐂 pair

Shi$ and Add

𝑧",+ 𝑧"," 𝑧",#

𝑉"

𝑉#

𝑉$

𝑉%

SL

DAC
𝐵.

DAC

DAC

DAC

𝐵.

𝐵.

𝐵.

ADC

MSB LSB

‘+’ve

𝑦#

‘-’ve ‘+’ve ‘-’ve

Shi$ and Add

𝑧#,+ 𝑧#," 𝑧#,#

ADC ADC

𝐵/ 𝐵/ 𝐵/ 𝐵/ 𝐵/ 𝐵/

WL

BL

𝑥0
𝑉0DAC

𝐵.

ADC ADC ADC

BL
SL

Figure 1: A 1T-1R resistive crossbar-based in-memory archi-
tecture realizing a signed multi-bit MVM computation via
differential representation and bit-slicing, with parameters
M = 2, N = 5, and Nc = 3.

achieves program-verify [7] level write accuracy while being 5×-
to-10× more energy and latency efficient. SWIPE realizes bitcell
writes via a single scan of the array. It further leverages bit-slicing
and the statistics of device variations to compensate for both device
mismatch (spatial) and write noise (C2C) variations. Furthermore,
SWIPE can be efficiently realized in crossbars by reusing peripheral
circuits employed for MVM computations. In this manner, SWIPE
simultaneously achieves both efficient and accurate programming
of crossbar arrays. While SWIPE can be used in any resistive cross-
bar array, we focus on ReRAM-based crossbars in this paper. Our
contributions are summarized below:

• we study the impact of conductance variations on the signal-
to-noise ratio (SNR) of ReRAM crossbar MVM and find that
it is dominated by the noise in the most significant bit cells.
• we propose SWIPE and justify it both theoretically and via
simulations using the Stanford ReRAM Verilog-A model [12].
• we demonstrate the effectiveness of SWIPE in enhancing
the accuracy of DNNs realized on ReRAM crossbars in the
presence of conductance variations, both spatial and C2C.
• we show that augmenting SWIPE with noise injection meth-
ods further enhances the robustness of crossbar DNN imple-
mentations.

2 PRELIMINARIES
In this section, we provide the necessary background. We consider
a crossbar implementation of the following MVM:

y =WTx (1)

where x = [x1, . . . ,xN]T is aN×1 the input vector, y = [y1, . . . ,yM]T
is theM × 1 output vector, and W denotes aM × N weight matrix
with weightswi j at i-th row and j-th column. Without loss of gen-
erality, we assume xi ∈ [0, 1] andwi, j ∈ [−1, 1], with precisions Bx
and Bw , respectively.

2.1 MVM via a Resistive Crossbar
The 1T-1R resistive crossbar-based in-memory architecture in Fig. 1
realizes a signed Bw -b×Bx -b MVM in (1). Each 1T-1R bitcell (BC)
stores Bc bits and two adjacent BCs (BC pair) to realize a signed
scalar using differential representation [6, 8]. Using a bit-sliced archi-
tecture [3, 14], a Bw -b signed weightwi, j is stored in Nc adjacent
BC pairs with Bw = NcBc +1. Thus, theM ×N Bw -b weight matrix
W requires a 2N × NcM crossbar. Each column pair in this archi-
tecture computes a partial dot product that is converted to digital
domain via a differential analog to digital converter (ADC).

The jth partial dot product zj,k is computed in a pair of columns
as follows:

zj,k =
α

∆GmaxVmax

N∑
i=1

∆Gi, j,kVi (2)

where Vi = xiVmax is the voltage on the i-th bit-line (BL) (see
Fig. 1), ∆Gi, j,k is the difference between conductances of BCs in
the k-th BC pair associated withwi, j , α is a constant, ∆Gmax is the
conductance range, and Vmax is the voltage range for the DAC out-
put Vi . Note that ∆Gi, j,k ∈ G = {д−L+1, . . . ,д0, . . . ,дL−1} where
|G| = 2L − 1, L = 2Bc , дl = l∆д (l = −L + 1, . . . ,L − 1), and ∆д is
the differential conductance step (see Fig. 2).

The partial dot products zj,k are digitized and summed after
binary weighing to realize the final dot product yj (see (1)) as
follows:

yj =

Nc−1∑
k=0

2−kBc zj,k =
N∑
i=1

wi, jxi (3)

Note that the 2Nc cells associated with each weight parameterwi, j
can be stored across multiple banks [21].

2.2 Non-idealities in Crossbar
ReRAM devices are programmed using two operations: (a) SET,
and (b) RESET. The SET operation increases the conductance of
the ReRAM device, while RESET reduces it. In most emerging non-
volatile memory (eNVM) devices, the SET operation is abrupt, and
only the RESET operation is used for multi-level conductance tun-
ing [5]. To obtain the desired conductance change, RESET pulses
are either modulated in time, amplitude, or the number of pulses
[18]. ReRAM conductance as a function of the number of RESET
pulses can be non-linear; appropriately choosing the number of
pulses is required to achieve the desired conductance change (see
Fig. 2(a)).

Stochastic non-idealities in a crossbar are due to: (a) spatial vari-
ations in the BCs, and (b) write noise, which includes C2C variations
in the cell conductances. The C2C variations occur due to the un-
predictability in the ReRAM conductance during the RESET or SET
operation. For a BC pair, we model conductance variations due to
C2C and the device mismatch as follows:

∆Gi, j,k = ∆G̃i, j,k + ηi, j,k (4)

where ∆G̃i, j,k ∈ G the desired (ideal) cell conductance (conductance
state), and ηi, j,k is the variation in conductance caused by both
spatial variations and write noise. The distribution of ηi, j,k con-
ditioned on the value of ∆G̃i, j,k is denoted by Pη (ηi, j,k |∆G̃i, j,k =

2

SWIPE: Enhancing Robustness of ReRAM Crossbars for In-memory Computing ICCAD ’20, November 2–5, 2020, Virtual Event, USA

𝚫𝑮𝐦𝐚𝐱

Δ𝑔

Δ𝑔

Δ𝑔 𝑔(

𝑔)

𝑔*

Reset pulses

N
or

m
al

iz
ed

 c
on

du
ct

an
ce

(a)

Normalized conductance
(Δ𝐺#,%,&/Δ𝐺()*)

of

 o
cc

ur
re

nc
es 𝒈𝟑𝒈-𝟑

𝒈𝟎
𝒈𝟐𝒈𝟏𝒈-𝟐 𝒈-𝟏

(b)

Figure 2: ReRAM write noise with Bc = 2 bits/cell using the
Stanford ReRAM Verilog-A model [12]: (a) normalized con-
ductance vs. number of RESET pulses under ideal (no con-
ductance variation) conditions. The four conductance states
are obtained by equipartitioning the conductance range
∆Gmax into three steps, and (b) Monte Carlo simulations
showing conductance variations on the conductance differ-
ence of the BC pair due to C2C variation and device mis-
match when an average number of RESET pulses from (a)
is applied to each cell in the BC pair.

дl) = N(0,σ 2
д,l) (see Fig. 2(b)). Additionally, the read noise during

MVM computation, that includes thermal noise and shot noise, can
be modeled as an additive Gaussian random variable sampled in
every read iteration as suggested in [8].

3 THE SINGLE-WRITE IN-MEMORY
PROGRAM-VERIFY (SWIPE) METHOD

In this section, we present the proposed Single-Write In-memory
Program-vErify (SWIPE) to minimize the impact of write noise and

(a) (b)

(c) (d)

Normalized SL current

N
um

be
r o

f o
cc

ur
re

nc
es

Figure 3: Histograms of the normalized SL current differ-
ence (∝ zk, j) for different values of weights in the BCs where
the average conductance standard deviation σд/∆Gmax =
2.6%, Bx = 1, Bc = 2 with: (a) N = 1, (b) N = 2, (c) N = 4,
and (d) N = 8. Stanford ReRAM Verilog-A model [12] was
used for simulations.

device mismatch on the SNR of MVM computations in crossbar
arrays.

3.1 Impact of Conductance Variations
During a crossbar-based in-memory MVM computation, individual
BC currents are accumulated in the source lines (SLs) (see Fig. 1) to
compute the dot product (2). This leads to an aggregation of noise
due to device variations as shown below:

zj,k + γj,k =
α

∆GmaxVmax

N∑
i=1

(
∆G̃i, j,k + ηi, j,k

)
Vi (5)

where zj,k the partial dot products from (2), and γj,k is the total
noise accumulated in the SL current. Monte Carlo simulations in
Fig. 3 show that the outputs zj,k can be easily discriminated if
N = 1 but becomes increasingly difficult as N increases due to the
corresponding increase in the variance of γj,ks .

The SNR of the final dot product output yj in (3) is dominated by
variations in cells with higher significance (k = 0), i.e., SNR of zj,0.
In fact, even if high-precision ADCs were to be employed in the
architecture in Fig. 1, the SNR of the output yj is upper bounded as
(see Appendix for derivation):

SNRy ≤
(
∆Gmax

α

)2 E
[
y2

]
(1 − 2−2Bc)

Nσ 2
д,minE

[
x2

]
(1 − 2−2NcBc)

(6)

where σ 2
д,min = minl σ 2

д,l . Note that this upper bound flattens out
as the weight precision Bc increases.

One way to overcome this SNR bound is to find a method to pro-
gram zj,k+1 such that it is inversely correlated with γj,0, . . . ,γj,k ,
i.e., the value stored in the less significant BC pair is chosen to
compensate for the noise in BC pairs of higher significance. The
proposed SWIPE method precisely does this by exploiting the bit-
sliced nature of the crossbar-based in-memory architecture.

3.2 Proposed SWIPE Algorithm
The proposed SWIPE method writes the Nc BC pairs that store the
word wi, j sequentially one BC pair at a time, in a specific order,
i.e., from the most significant to the least significant BC pair. While

3

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujan K. Gonugondla, Ameya D. Patil, Naresh R. Shanbhag

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫

𝑒" > 0

𝑒" > 𝜏&' 𝑒" < 𝜏)

𝑒" > 𝜏&) 𝑒" > 𝜏* 𝑒" > 𝜏' 𝑒" > 𝜏+

𝑔&+ 𝑔&) 𝑔&' 𝑔* 𝑔' 𝑔) 𝑔+

YN

YNYN

YNN Y Y YNN
Post processing

𝒇𝟐,𝟏,𝒌 𝒇𝟐,𝑵,𝒌

BL

WL
SL

𝟎

𝟎

𝑽𝐑
𝑽𝐖𝐋

𝟎

𝟎

𝟎

𝟎

𝑽𝐖𝐋

𝟎 𝟎 𝟎 𝟎 𝟎 𝟎

𝟎

𝟎𝟎 𝑽𝑾 𝑽𝑾

𝟎

𝟎

Word read to get
𝑓"

Estimate
Δ𝐺"

Write
Δ𝐺"

𝑘 ← 𝑘 + 1	

(a)

(b) (c) (d)

𝟎

Figure 4: The proposed SWIPE method: (a) Flow diagram illustrating the three stages of SWIPE applied to the 2-nd row of a
crossbar where k = 2, Nc = 4, and Bc = 2, (b) the word-read stage to obtain fk , (c) decision tree to estimate ∆G, and (d) the write
stage showing 1/Nc -th row written.

writing the k-th BC pair of a given word wi, j , SWIPE leverages
the knowledge of the composite conductance value of the already
written BC pairs 0 to k − 1 (including their static variations) of that
word. The knowledge and the parameters of distribution of device
variations are leveraged to optimally choose the conductance value
of the k-th BC pair to be written into. Note that BC pairs of all
the words in a given row with the same significance are written
in parallel, i.e., Ncol/Nc BC pairs/row are programmed in every
iteration. Furthermore, SWIPE programs each BC pair only once,
making it significantly (5×-to-10×) more efficient compared to the
standard program-verify techniques [2, 5, 7].

Formally described in Algorithm 1, each iteration k has following
three steps (see Fig. 4(a)), where the cell indices i, j are dropped for
simplicity:

Word-read: In this step, the composite value fk of k already
written BC pairs is read from the array (see Fig. 4(b)) as follows:

fk =
α

∆Gmax

k−1∑
m=0

2−mBc∆Gm (7)

Note that, fk = 0 for k = 0. Also, in absence of conductance
variations, fk is the kBc + 1 bit quantized version of w , where w
denotes the desired value of the word.

Estimate: In this step, fk is used to determine the desired con-
ductance state of the next BC pair ∆G̃k (see Fig. 4(c)) as follows:

∆G̃k = дd if τd−1 ≤ ek < τd (8)

where the error ek = α−1∆Gmax2kBc (w − fk) quantifies how far
fk is from the desired value w , дd ∈ G, and the thresholds T =
{τd }d=L−1d=−L+1 are predetermined based on the variances of write
noise per conductance state.

Write: The estimated conductance state ∆G̃k is written to the
k-th BC pair, as shown in Fig. 4(d).

Note that SWIPE can compensate accurately if the errors ek in
each iteration are maintained within the representable range of
the unwritten LSB cells, i.e., if the |ek | ≤ 1 for all k . Some devices

in rare conditions observe large conductance changes even with
small pulses. In these cases SWIPE may not be able to compensate
completely due to a large changes in ek . Such catastrophic effects
are not acceptable when the array is used as a conventional memory
as they lead to increased bit-errors. However, when the crossbar
is used for implementation of MVM computations in DNNs, these
rare effects minimally affect the classification accuracy due to the
inherent error-tolerance of DNNs.

Since we assume an abrupt SET in the ReRAM device, SWIPE in
Algorithm 1 assumes that the all the cells are set to high conductance
state before the write process. Though, SWIPE reads only the cells
that are previously written, it can be modified to read the the cells
in the array. This modification will be useful if the cells are not set
to high conductance state before the read process.

SWIPE programs one BC pair per word each iteration, thus
requiring Nc iterations to write an entire row. To speedup the write
process, SWIPE can be enhanced such that multiple BC pairs are
programmed per iteration. However, doing so might result in lower
accuracy as it increases the probability that the error ek lies outside
the compensation range.

3.3 Choosing Optimal Thresholds
The thresholds T{τd }d=L−1d=−L+1 need to be chosen to maximize SNR.
At iteration k , given that fk , the optimal value for ∆G̃k is obtained
by solving:

∆G̃k = arg min
дl ∈G

E
[
(w − fk+1)2 | fk

]
= arg min

дl ∈G
E
[
(ek − дl + ηд,l)2 | fk

]
= arg min

дl ∈G

[
(ek − дl)2 + σ 2

д,l
]
. (9)

where ηд,l is a random variable capturing the conductance vari-
ations when the conductance state is дl . Given the conductance
variances {σ 2

д,l } (4), the optimal thresholds Topt are computed by
solving (9) for every value of ek . In practice, Topt are pre-computed

4

SWIPE: Enhancing Robustness of ReRAM Crossbars for In-memory Computing ICCAD ’20, November 2–5, 2020, Virtual Event, USA

once and stored on-chip, therefore only (8) needs to be implemented
on-chip to find ∆G̃k .

Algorithm 1 Single-Write In-memory Program-vErify (SWIPE).
Input: The target weight matrixW, G, {σ 2

д,l }, Bc , Nc .
Output: The crossbar array conductance ∆Gi, j,k ∀ i, j,k

1: Estimate {τi }L−1i=−L+1 by solving (9)
2: for i := 1 to N do
3: parallel for j := 1 toM do
4: for k := 0 to Nc − 1 do
5: Word-read row i to obtain fi, j,k
6: ei, j,k ← α−1∆Gmax2kBc (wi, j − fi, j,k)
7: Obtain ∆G̃i, j,k as per (8)
8: Write back ∆G̃i, j,k
9: end for
10: end parallel for
11: end for

3.4 Hardware Considerations
Implementing SWIPE in hardware requires minimal overhead since
it can leverage the peripheral circuitry associated with existing
crossbar based accelerators [3, 14].

Word-read: TheWord-read operation to obtain fk can be realized
by employing one-hot encoded inputs during MVM (see Fig. 4(b)).
However, the SL current needs to be amplified to match the ADC
input range since one BC pair contributes to the SL current as
compared to the standard MVM mode. Furthermore, the precision
of the ADC should be large enough to make accurate comparisons
required in (8).

Estimate: The threshold operation (8) requires one subtraction
and Bc comparisons for each weight in a row (see Fig. 4(c)). This
operation requires the storage of 2L − 1 thresholds.

Write: The write operation in SWIPE requires Nc reads and write
operations per row which makes it significantly efficient compared
to conventional program-verify methods.

4 SIMULATION RESULTS
In this section, we discuss the effectiveness of SWIPE in enhancing
robustness to write noise and device mismatches. First, we describe
a custom simulation methodology used to reflect the circuit and
device non-idealities in the system-level performance of the ReRAM
crossbar. We study SWIPE in the context of DNN implementation
on crossbars.

4.1 End-to-end Simulation Methodology
Figure 5 shows the evaluation methodology employed to quantify
the system-level performance of DNNs on crossbars that integrate
the circuit, architecture, and algorithmic parameters and design
variables. We used the Stanford ReRAM Verilog-A model [12] for
the ReRAM device characteristics, and commercial 22 nm FDSOI
process to implement the access transistors. The design parameters
used in the simulations are summarized in Table 1.

Verilog A model

Algorithmic
parameters
(NN, DCT)

Write and read
circuit model
parameters

Model parameters
(Size, Tunneling
gap variance)

Noise and
variation models

Accuracy metrics
(SNR, Classification accuracy)

SPICE
simulations

Python
simulations

Compare

Model verification

Model parameters

Figure 5: Evaluation methodology.

Table 1: Device and circuit parameters used in simulations.

Parameter Value Parameter Value

Gmax (µS) 500 Gmin (µS) 50
Bx (bits) 8 Crossbar Size 64 × 128Nc

ADC prec. (bits) 7−to−10 Bw (bits) 2−to−9
SL Res. (Ω/Cell) 0.86 BL Res. (Ω/Cell) 0.47

4.1.1 ReRAM Variation Model. The cycle-to-cycle variations dur-
ing the SET and RESET operations on the ReRAM device are mod-
eled by introducing variation to the tunneling gap growth rate in
the Verilog-A model as suggested in [12]. We modeled the device
conductance distribution via circuit simulations of the ReRAM de-
vice, as shown in Fig. 2(b). The device-to-device variations can be
modeled by introducing variation in the size of the ReRAM device.

4.1.2 Crossbar Array Model. We developed a Python model of the
ReRAM crossbar that incorporates the effects of ReRAM device
variations. We verified this model against circuit simulations of
a 32 × 32 crossbar. For circuit simulations, we modeled ReRAM
devices with equivalent resistors by appropriately choosing their
conductance values.We used ideal voltage sources for inputs on BLs,
ideal OpAmp-based current integrators on the SLs, and transistors
based on 22 nm FDSOI technology.

We first compared the MVM operations on Python and circuit
model by encoding conductance values based on 100 randomly
chosen matrices and input vectors. We find that the Python model
is within 0.2% and 1.1% of the circuit model with and without SL and
BL parasitic resistances, respectively. The outputs of the Python and
circuit models were compared to ideal expected outputs to verify
the consistency of these models. The SL currents were quantized in
post-processing assuming an ideal ADC. Next, we verified the data
encoding procedures in SWIPE with circuit simulations. For each
RESET operation, we sampled the BC conductance from ReRAM
noise models obtained via Monte Carlo simulations of the Verilog
A model.

5

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujan K. Gonugondla, Ameya D. Patil, Naresh R. Shanbhag

𝑠 (%)
(a) (b)
𝑠 (%)

SN
R
%
(d
B)

SN
R
%
(d
B)

Figure 6: SNRy of 16-point DFT implementation on a 16 ×
32Nc crossbar with respect to the skew s in the thresholds
with Bw = 7: (a) σд/∆Gmax = 2.7%, and (b) σд/∆Gmax = 10.8%.
Input SNR was set at 41 dB.

4.1.3 Application-level Simulations. The Python model was used
for large scale statistical simulations of the application-level perfor-
mance of the crossbar architecture. For the DNN simulations, we
embed this Python model of the crossbar array into the PyTorch
framework. The neural networks were mapped onto the crossbar
using a naive network partitioning techniques, such as those pre-
sented in [15]. In order to ensure that the network can be easily
quantized, we ensure the weights to lie between [−1,+1] by clip-
ping and scaling the weights during training. We study the impact
of write noise on application-level accuracy metrics by varying
σд/∆Gmax where σ 2

д is the conductance variance averaged over all
the conductance states as follows:

σ 2
д =

1
2L − 1

∑
l

σ 2
д,l (10)

4.2 Optimality of SWIPE Thresholds
To demonstrate the optimality of the thresholds T obtained from
(9), we observe the impact on the SNR of outputs y, SNRy , under a
skew s in each threshold τ ∈ T, as follows:

τskew = τopt + s∆д (11)

Figure 6 shows that the the pre-ADC SNR of the output yj (SNRy)
of 16-point discrete Fourier transforms (DFTs) is maximized when
s = 0, τskew = τopt. For these simulations, the DFT weights and the
inputs were encoded in fixed point and the DFT matrix parameters
were written into the array using SWIPE. The input signal has 3
tones with randomly chosen frequencies, and the precision of the
inputs was fixed at Bx = 8. The SNR is estimated by comparing the
DFT outputs from the array with the outputs from an ideal floating
point baseline.

In Fig. 6, we observe that SNRy is robust (flat) w.r.t. threshold
variations for two scenarios: 1) quantization noise dominated sce-
nario when σд and Bc are small as observed with Bc = 1 in Fig. 6(a);
and 2) when conductance variations dominate, i.e., σд and Bc are
high, as observed with Bc = 3 in Fig. 6(b).

Since, in SWIPE, the accuracy of the threshold operation (see
Fig. 4(c)) is critical to maximize SNRy , therefore, the ADC precision
during the word-read operation needs to be high enough for accu-
rate thresholding. Figure 7 shows that the ADC precision should be
at least Bw for SNRy to be within 3 dB of the maximum achievable
SNRy . Note that the SNR improves for ADC precision higher than

ADC precision

SN
R
$

(d
B)

(a) (b)
ADC precision

SN
R
$

(d
B)

Figure 7: SNRy of 16-point DFT implementation on a 16 ×
32Nc crossbar with respect ADC precision during the word-
read operation in SWIPE for: (a) Bw = 5, and (b) Bw = 7.

Bw as it enables a more accurate implementation of (8). Therefore,
we choose ADC precision to be Bw + 2 in the rest of the chapter.

4.3 Robustness Improvements in DNN
Implementations

We study two DNN architectures: (a) LeNet-300-10, and (b) an 8-
layer CNN with 7 convolution layers1 followed by an AveragePool
and a fully connected layer for classification on the MNIST and
the CIFAR-10 datasets, respectively. Both networks employ Batch-
Norm and a ClippedReLU nonlinearity at the output of each layer.
The networks were trained with floating point weights and activa-
tions. The network weights and activations were quantized post
training for inference using the Python model of the crossbar array.
In order to reduce the impact of the outliers, the weights in each
kernel were first clipped in the range [−4σw , 4σw], where σ 2

w is the
varience of the weights in that kernel. This clipping is followed by
uniform quantization with Bw bits. The scaling factors from the
quantization scheme is absorbed into the batch-norm parameters.
We choose weight precision Bw = 7, and the activation precision
Bx = 6 to limit the accuracy loss with respect to a floating point
design to < 0.2%.

Figure 8 shows that SWIPE improves the robustness to con-
ductance variations on both networks. The typical conductance
variations in ReRAM due to write noise and device mismatch are
about 2%-to-5% [17]. In this range, operating without SWIPE results
in loss in accuracy with even with Bc = 1. In contrast, operating
with SWIPE for Bc = 1 results no loss in accuracy in both networks
for variations as high as > 12%. These gains in robustness translates
to gains in density, since SWIPE allows us to operate in the typical
variation range with < 1% drop in accuracy for Bc ≤ 2, and Bc ≤ 3,
on CIFAR-10 and MNIST, respectively. Thus, SWIPE allows us to
simultaneously enhance robustness and density by 4.8×-to-7.7×
and 2×-to-3×, respectively.

In NI-based training, Gaussian noise N(0,σ 2
NI) is added to net-

work weights during the feed-forward pass of the back-propagation
iterations during training. NI-based training has been observed to
improve robustness to line resistance [8], and to device mismatch
and conductance variation in [13, 19]. We studied the impact of
noise injection, by training networks with different values of σNI,

1The 7 convolutional layers are (3C64S1)×3−(3C128S2)−
(3C128S1)−(3C256S2)−(3C512S1), where (aCbSc) indicates a × a kernel, b
output channels, and stride c .

6

SWIPE: Enhancing Robustness of ReRAM Crossbars for In-memory Computing ICCAD ’20, November 2–5, 2020, Virtual Event, USA

𝜎"/Δ𝐺&'((%)

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

wo/
SWIPE
𝐵- = 1

w/
SWIPE

𝐵- = 3 𝐵- = 2 𝐵- = 1

MNIST
𝟒. 𝟖×

𝟑×		↑ 𝐝𝐞𝐧𝐬𝐢𝐭𝐲

𝟕. 𝟕×
𝟐×		↑ 𝐝𝐞𝐧𝐬𝐢𝐭𝐲

(a)

𝜎"/Δ𝐺&'((%)

wo/
SWIPE
𝐵- = 1

w/
SWIPE

CIFAR-10
𝟒. 𝟖×

𝟐×		↑ 𝐝𝐞𝐧𝐬𝐢𝐭𝐲

𝐵- = 3 𝐵- = 2 𝐵- = 1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

(b)

Figure 8: Accuracy in the presence of SWIPE with respect to
average BL conductance variations for: (a) LeNet-300-100 on
theMNIST dataset, and (b) the 8-layer CNN on the CIFAR-10
dataset. The box plots show the spread in network accuracy
over 100 iterations. The shaded regionmarks the typical con-
ductance variation range [17].

ranging from 0% to 10%. Though NI-based training improves robust-
ness with increase in the training noise variance σ 2

NI (see Fig. 9(a)),
we observe that it degrades the maximum achievable accuracy at
σд/∆Gmax = 0. Furthermore, NI-based training still results in 26%
accuracy loss in the typical conductance variation range (shaded)
(2%-to-5%) on the CIFAR-10 dataset. In contrast, Fig. 9(b) shows
that augmenting SWIPE applied on the weights obtained busing
NI-based training results in < 1% loss in accuracy with Bc = 3
within the typical conductance variation range. Thus augmenting
SWIPE with NI-based training will reduce the need to use σNI.

Augmenting SWIPE with NI-based training also enables the
designs using crossbar-based in-memory architectures that are si-
multaneously robust to both read and write noise. We studied the

𝜎"# = 10%

𝜎(/Δ𝐺,-.(%)

𝜎"# = 0%

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

CIFAR10: \wo SWIPE
𝐵2 = 3

26% loss

(a)

𝜎"# = 10%

𝜎"# = 0%

𝜎(/Δ𝐺,-.(%)

CIFAR10: \w SWIPE
𝐵2 = 3 ~1% loss

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

(b)

Figure 9: Accuracy of the 8-layer CNN for the CIFAR-10
dataset with NI-based trained where σNI ranges from 0% to
10% in steps of 1.25%, and with Bc = 3: (a) without SWIPE,
and (b) with SWIPE. The shaded region marks the typical
conductance variation range [17].

impact of read noise by injecting additional random fluctuations
in the device conductances for every MVM on the crossbars. Fig-
ure 10(a) shows that NI-based training improves robustness to read
noise in the absence of write noise. However, in the presence of
write noise, the classification accuracy decreases dramatically by
48% (see Fig. 10(b)) on the CIFAR-10 network. This loss in accu-
racy due to write noise is recovered by using SWIPE, as shown in
Fig. 10(c).

Python simulations reveal that for Bw = 7, and for σд/∆Gmax =
2.7% to σд/∆Gmax = 6.8%, conventional program-verify methods
need up to 5-to-10 iterations implying that the use of SWIPE will
result in 5×-to-10× lower write costs since it programs the array in
a single pass.

7

ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujan K. Gonugondla, Ameya D. Patil, Naresh R. Shanbhag

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy
 (%

)

Read noise (%) Read noise (%)Read noise (%)

\wo NI

\wo NI

\w NI
\wo NI

\w NI

\wo write noise
𝜎" /Δ𝐺&'(= 0%

\wo SWIPE

\w NI

\w write noise
𝜎"/Δ𝐺&'(= 6.8%

\wo SWIPE
\w write noise
𝜎"/Δ𝐺&'(= 6.8%

\w SWIPE

(a) (b) (c)

48 % loss

Figure 10: Accuracy of the 8-layer CNN on the CIFAR-10 dataset in the presence of read noise with Bc = 2: (a) without SWIPE
and write noise (σд/∆Gmax = 0%), (b) without SWIPE and with write noise (σд/∆Gmax = 6.8%), and (c) with SWIPE and write
noise (σд/∆Gmax = 6.8%); σNI = 5% was used to train with NI. Box plots show the spread in accuracy over 100 iterations.

5 CONCLUSIONS
This paper presents SWIPE method to enable efficient and accu-
rate writes in the presence of write noise and device mismatch for
in-memory crossbars. We demonstrate that SWIPE enables DNN
implementation on ReRAM crossbars with < 1% loss under typical
values of write noise and device variations. Augmenting SWIPE
with NI-based training enables DNN implementation on crossbars
that are simultaneously robust to both write and read noise. SWIPE
can also be used in other applications to enhance the SNR of MVMs
implemented on resistive crossbars.

APPENDIX
In this appendix, we derive the SNR bound (6). Each dot productyj is
broken down into Nc dot-products {zj,k }Nc−1

k=0 across the columns
based on (3). The conductance variations result in the accumulated
noise in γj,k added to zi,k as shown in (5), where γj,k is as follows:

γj,k =
α

∆GmaxVmax

N∑
i=1

ηi, j,kVi (12)

Assuming the precision of the ADC is sufficiently large, the total
noise ηyj in the final dot product yj is given by:

ηyj =

Nc−1∑
k=0

2−kBcγj,k (13)

Assuming conductance variations across the array zero mean inde-
pendent identically distributed, and the weights are independent

uniformly distributed, the final noise power can be estimated as:

E
[
η2yj

]
=

Nc−1∑
k=0

2−2kBcE
[
γ 2

]
=

(
1 − 2−2NcBc

1 − 2−2Bc

)
E
[
γ 2

]
(14)

Furthermore, from (12) we have the following:

E
[
γ 2j,k

]
=

(
α

∆GmaxVmax

)2 N∑
i=1
E
[
η2i, j,kV

2
i

]
=

(
α

∆GmaxVmax

)2 N∑
i=1
E
[
η2i, j,k

]
E
[
V 2
i
]

≥
(

α

∆Gmax

)2
Nσ 2

д,minE
[
x2

]
(15)

From (3), (14), and (15), the upper bound (5) on the output SNR is
obtained:

SNRy ≤
(
∆Gmax

α

)2 E
[
y2

]
(1 − 2−2Bc)

Nσ 2
д,minE

[
x2

]
(1 − 2−2NcBc)

(16)

ACKNOWLEDGMENTS
This work was supported by the Center for Brain-Inspired Com-
puting (C-BRIC) funded by the Semiconductor Research Corpora-
tion (SRC) and the Defense Advanced Research Projects Agency
(DARPA).

REFERENCES
[1] Amogh Agrawal, Chankyu Lee, and Kaushik Roy. 2019. X-CHANGR: Changing

Memristive Crossbar Mapping for Mitigating Line-Resistance Induced Accuracy
Degradation in Deep Neural Networks. arXiv preprint arXiv:1907.00285 (2019).

8

SWIPE: Enhancing Robustness of ReRAM Crossbars for In-memory Computing ICCAD ’20, November 2–5, 2020, Virtual Event, USA

[2] Fabien Alibart, Ligang Gao, Brian D Hoskins, and Dmitri B Strukov. 2012. High
precision tuning of state for memristive devices by adaptable variation-tolerant
algorithm. Nanotechnology 23, 7 (2012), 075201.

[3] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin
Foltin, R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Stra-
chan, Kaushik Roy, and others. 2019. PUMA: A programmable ultra-efficient
memristor-based accelerator for machine learning inference. In International
conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). ACM, 715–731.

[4] Aayush Ankit, Abhronil Sengupta, and Kaushik Roy. 2017. Trannsformer: Neural
network transformation for memristive crossbar based neuromorphic system
design. In International Conference on Computer-Aided Design (ICCAD). IEEE,
533–540.

[5] Ming Cheng, Lixue Xia, Zhenhua Zhu, Yi Cai, Yuan Xie, Yu Wang, and Huazhong
Yang. 2018. TIME: A training-in-memory architecture for RRAM-based deep
neural networks. IEEE Transactionss on Computer-Aided Design of Integrated
Circuits and Systems 38, 5 (2018), 834–847.

[6] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. 2016. PRIME: A
Novel Processing-in-Memory Architecture for Neural Network Computation in
ReRAM-Based Main Memory. In International Symposium on Computer Architec-
ture (ISCA). IEEE/ACM, 27–39.

[7] Ligang Gao, Pai-Yu Chen, and Shimeng Yu. 2015. Programming protocol opti-
mization for analog weight tuning in resistive memories. IEEE Electron Device
Letters 36, 11 (2015), 1157–1159.

[8] Zhezhi He, Jie Lin, Rickard Ewetz, Jiann-Shiun Yuan, and Deliang Fan. 2019.
Noise Injection Adaption: End-to-End ReRAM Crossbar Non-ideal Effect Adap-
tion for Neural Network Mapping. In Design and Automation Conference (DAC).
IEEE/ACM, 57.

[9] Mark Horowitz. 2014. Computing’s energy problem (and what we can do about
it). In IEEE International Solid-State Circuits Conference (ISSCC). IEEE, 10–14.

[10] Miao Hu, Catherine E Graves, Can Li, Yunning Li, Ning Ge, Eric Montgomery,
Noraica Davila, Hao Jiang, R Stanley Williams, J Joshua Yang, and others. 2018.
Memristor-based analog computation and neural network classification with a
dot product engine. Advanced Materials 30, 9 (2018), 1705914.

[11] Miao Hu, John Paul Strachan, Zhiyong Li, Emmanuelle M Grafals, Noraica
Davila, Catherine Graves, Sity Lam, Ning Ge, Jianhua Joshua Yang, and R Stanley
Williams. 2016. Dot-product engine for neuromorphic computing: Programming
1T1M crossbar to accelerate matrix-vector multiplication. In Design Automation
Conference (DAC). IEEE, 1–6.

[12] Zizhen Jiang, Yi Wu, Shimeng Yu, Lin Yang, Kay Song, Zia Karim, and H-S Philip
Wong. 2016. A compact model for metal–oxide resistive random access memory
with experiment verification. IEEE Transactions on Electron Devices 63, 5 (2016),
1884–1892.

[13] Yun Long, Xueyuan She, and Saibal Mukhopadhyay. 2019. Design of Reliable
DNN Accelerator with Un-reliable ReRAM. In Design, Automation and Test in
Europe Conference (DATE). IEEE/ACM, 1769–1774.

[14] Ali Shafiee, Anirban Nag, Naveen Muralimanohar, Rajeev Balasubramonian,
John Paul Strachan, Miao Hu, R Stanley Williams, and Vivek Srikumar. 2016.
ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arith-
metic in Crossbars. In International Symposium on Computer Architecture (ISCA).
IEEE/ACM, 14–26.

[15] Linghao Song, Xuehai Qian, Hai Li, and Yiran Chen. 2017. Pipelayer: A pipelined
ReRAM-based accelerator for deep learning. In International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 541–552.

[16] Xiaoyu Sun and Shimeng Yu. 2019. Impact of Non-Ideal Characteristics of
Resistive Synaptic Devices on Implementing Convolutional Neural Networks.
IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS) 9,
3 (2019), 570–579.

[17] Wei Wu, Huaqiang Wu, Bin Gao, Peng Yao, Xiang Zhang, Xiaochen Peng, Shi-
meng Yu, and He Qian. 2018. A methodology to improve linearity of analog
RRAM for neuromorphic computing. In IEEE Symposium on VLSI Technology
(VLSI-T). IEEE, T103–T104.

[18] Shimeng Yu, Ximeng Guan, and H-S Philip Wong. 2012. On the switching
parameter variation of metal oxide RRAMâĂŤpart II: Model corroboration and
device design strategy. IEEE Transactions on Electron Devices 59, 4 (2012), 1183–
1188.

[19] Bonan Zhang, Lung-Yen Chen, and Naveen Verma. 2019. Stochastic data-driven
hardware resilience to efficiently train inference models for stochastic hardware
implementations. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 1388–1392.

[20] Zhenhua Zhu, Jilan Lin, Ming Cheng, Lixue Xia, Hanbo Sun, Xiaoming Chen,
Yu Wang, and Huazhong Yang. 2018. Mixed size crossbar based RRAM CNN
accelerator with overlapped mapping method. In International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[21] Zhenhua Zhu, Hanbo Sun, Yujun Lin, Guohao Dai, Lixue Xia, Song Han, YuWang,
and Huazhong Yang. 2019. A Configurable Multi-Precision CNN Computing
Framework Based on Single Bit RRAM. In Design and Automation Conference

(DAC). IEEE/ACM, 56.

9

