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A Single-Chip Pipelined 2-D FIR Filter 
Using Residue Arithmetic 

Naresh R. Shanbhag, Student Member, IEEE, and Raymond E. Siferd, Member, IEEE 

Abstract -Presented in this paper are novel circuits and ar- 
chitecture for residue arithmetic. These circuits are aimed to- 
wards fast and area-efficient single-chip implementation of digi- 
tal signal processors. This has been achieved by following an 
algorithmic approach as opposed to the conventional look-up 
table approach. As a result, substantial area savings have re- 
sulted. The circuits include the residue adder, residue multi- 
plier, binary-to-residue converter, and residue-to-binary con- 
verter. Based on these circuits, a prototype single-chip, 3 X3, 
finite impulse response (FIR), variable coefficient, linear-phase 
filter has been designed and fabricated in standard 2-pm CMOS 
technology. The filter has a pipelined architecture to increase 
the throughput. Testability in the form of scan-path registers 
has been incorporated. An interesting feature of this unique 
combination of residue arithmetic and scan-path testing is the 
possible trade-off available between the precision of the filter 
coefficients and the image data. The chip has a die size of 
6.6 X4.2 mm', dissipates 220 mW of power, and is synchronized 
with a 180-11s clock cycle. 

I .  INTRODUCTION 
EMANDS for higher speeds from digital signal pro- D cessing hardware are increasingly evident. Strategies 

for high-speed computation have evolved at the techno- 
logical, layout, and architectural levels. Prominent among 
technological innovations are those that are gallium- 
arsenide (GaAs) based [l]. Even though GaAs technology 
looks promising in terms of attaining greater processing 
speeds than the well-established silicon technology, it is 
still maturing. Though some speed advantage is obtain- 
able through modifications at the layout level [2], they are 
not substantial unless supplemented by a proper architec- 
ture. Therefore, most of the speed-enhancing techniques 
have been developed at the architectural level [3l-[Sl. 

Pipelining [4] and parallel processing [ 5 ]  are two major 
architectural options available for increasing the clock 
speed. Unless the computation is recursive in nature, 
pipelining can always be applied. Parallel processing, on 
the other hand, seems to depend more on the nature of 
the algorithm being implemented. 

Yet another attractive option is the use of unconven- 
tional arithmetic like the residue number system (RNS) 
[6], which is gaining increasing usage due to its inherent 
parallelism. Most of the past work in this area has dealt 
with innovative circuits for residue applications [7]-[lo] 
without any implementation. The cases where implemen- 
tation has been successfully done [171, 1251, [27], 1281 have 
invariably resorted to multiple-chip implementation. For 
example, in [171, the design of a one-dimensional finite 
impulse response (FIR) filter, using residue arithmetic, is 
presented, which has been implemented using standard 
TTL IC packages. Another interesting implementation 
[2S] is in multiple-valued logic for a one-dimensional 
filter, though it must be mentioned that 247 chips are 
needed. The reason for most implementations having 
multiple chips is that modular operations are realized 
through array structures like ROM's, RAM'S, and PLA's, 
which are area expensive. We advocate a hybrid approach 
in this paper, where certain modules or their parts are 
realized by PLA's and the rest by an algorithmic (non- 
array based) circuit. This has enabled us to realize highly 
compact circuits with speed equal to or better than con- 
ventional array-based modular circuits. 

In this paper, we present novel circuits for modular 
operations. Some of the circuits, which include the 
binary-to-residue converters, are based partially on PLA's. 
The others are completely algorithmic in nature. Using 
these circuits, the design and implementation of a single- 
chip two-dimensional FIR filter is presented. 

The paper is divided into five more sections beginning 
with Section 11, in which we give some preliminary results 
about residue arithmetic and 2-D filtering. In Section 111, 
we present circuits for residue arithmetic, while Section 
IV contains the filter architecture. Timing and testability 
features of the chip is described in Section V, and finally 
we conclude with Section VI. 

11. PRELIMINARIES 
Typically a residue number system has a predefined set 

of modulii [ m l r m 2 , . .  . ,mn],  such that any decimal num- 
ber x, which is less than the dynamic range M ( M  = 

mlm29 ' ' ' 7 mn) ,  can be represented uniquely '' this 'Ys- 
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where 

are called the residue digits. The property which makes 
residue arithmetic attractive is that the addition and mul- 
tiplication of two numbers can be carried out on their 
residue digits, independent of each other. In other words 

i = l  . . .  X , = ( X )  mod mi = l X l m t ,  , , n  (1) 

x x y = ( X I  @,,Y,, x2 Bm, y2; . ., xn Bm, y,)  (3) 
where em, and Bm, denote addition and multiplication 
modulo m,. 

The implemented 2-D FIR filter has a mask size of 
3 X 3 with symmetric coefficients (Fig. l(a)). Apart from 
generating linear-phase characteristics, symmetric coeffi- 
cients offer a great deal of reduction in computational 
hardware. This is due to the fact that data (Fig. l(b)), 
which have to be multiplied with the same coefficients, 
can be added first. The output y ( i ,  j )  is computed as 
y ( i ,  j )  = A [ x ( i - 1 ,  j )  + x ( i  +1,  j ) ]  

+ ~ [ x ( i ,  j - 1 )  + x ( i ,  j + l ) ]  
+ C[ x ( i  - 1, j-1) + x ( i  + I ,  j +  I ) ]  
+ D [  x( i + 1, j - I )  + x( i - 1, j + I ) ]  + x( i, j )  . 

( 4) 
It may be noted that if the data and the coefficients are 

represented in a residue number system with moduli set 
[m,, m2; . ., m,], then the residue digits of y ( i ,  j )  are 
evaluated by substituting the residue digits of the data 
and coefficients into (4), with the addition and multiplica- 
tion being modulo m,. Thus n such computations can be 
carried out in parallel to generate all the residue digits of 
the output. For our filter the moduli set was [13, 11,  9, 7, 
5 ,  41 with a dynamic range of 180180 (17.37 b). 

111. CIRCUITS 
In this section, we present the design of all the modular 

arithmetic circuits, which include the binary-to-residue 
converter, residue multiplier, residue adder, and residue- 

Fig. 2. Residue adder block diagram. 

to-binary converter. It will be seen that our approach is a 
hybrid between a totally array-based approach and an 
algorithmic approach. In fact, we have employed PLAs to 
realize logic functions with at most four inputs. For the 
case of residue multipliers we have used PLAs with input 
encoding. We also give an area and speed comparison 
between a complete PLA-based approach and our ap- 
proach. As PLA’s are known to be area efficient as 
compared to ROM’s with their speeds being comparable, 
comparison with ROM-based structures has not been 
done. It must be mentioned that the speed estimations 
are based upon simulations on the event-driven logic-level 
simulator IRSIM, which provides conservative results as 
compared to an equivalent SPICE2 simulation. As we are 
interested in relative speeds, this conservatism is not 
crucial. The circuits are designed in standard 2-pm CMOS 
technology with typical MOSIS parameters. The supply 
voltage is 5 V. 

A. Modulo mi Adder 

The residue adder circuit proposed in [7] takes advan- 
tage of the fact that modular addition and subtraction 
form a finite cyclic group. Hence the adder [7] has an 
array of registers storing all possible residues and a com- 
plex rotate logic circuitry, controlled by the two operands, 
to select the correct residue as an output. It was found 
that not only is the adder area expensive, due to the 
presence of the registers and the rotate logic, but would 
also be slower. Our adder circuit, which is described next, 
is similar to the direct modulo adder described in [SI. It 
will be shown that our circuit offers a speed advantage as 
compared to the circuit in [SI. 

The residue adder circuit (Fig. 2) consists of a conven- 
tional n-bit ripple-carry binary adder (RCBA), which gen- 
erates an ( n  + 1)-bit output (RCBA). Here n equals the 
number of bits required to represent the modulus mi. Let 
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RCBA' represent the n-bit integer formed by ignoring the 
most significant bit (MSB) of RCBA, which is also the 
final carry (Cf) of RCBA. The next module (SUBm,) 
subtracts m, from RCBA', by adding the two's comple- 
ment of m, to RCBA'. In this process an (n+l)-bi t  
output (SUBm,) is generated. Finally, a 2 x  1 multiplexor 
(MUX2X 1) selects between RCBA' and SUBm;, where 
SUBm; is the n-bit integer formed by ignoring the MSB 
(which is also the final borrow Bf) of SUBm,, to generate 
the final output SMm,. As both the inputs X and Y are 
residue digits, their sum RCBA would lie between 0 and 
2m, -2. If RCBA < m, then MUX2x 1 selects RCBA' as 
the final output; otherwise it selects SUBm;. Hence, we 
see that there are two levels of logic (the RCBA and 
SUBm,) through which the data have to be processed. 
This is also true for the adder circuit in [SI. The advan- 
tage of our circuit is that we have a very elegant logic for 
controlling the MUX2x 1. In fact, it can be seen that 

C = Cf V Bf ( 5 )  

where C, and B, are the final carry and the final borrow 
of RCBA and SUBm,, respectively. Here, C = 1 results if 
RCBA is greater than or equal to m,. A brief analysis 
below shows that both Cf and Elf are required for the 
correct generation of the final result. If RCBA < m ,  G 
2 " - 1 t h e n C  -0,  B , = O , C = O a n d  RCBA'=RCBAis 
selected as the final output. If m,  G RCBA G 2" - 1 then 
C - 0, Bf = 1, C = 1 and hence SUBm; is the final result. f -  Finally, if 2" - 1 < RCBA then C, = 1, B, = 0, C = 1 and 
therefore SUBm: is again selected as the final output. 

The speed advantage of our circuit is derived from the 
fact that the ith bit of the second logic level (SUBm,) 
starts processing as soon as the corresponding bit of the 
first level (RCBA) is ready. In [SI, on the other hand, the 
second level has to wait for the final carry from the first 
level in order to start processing. 

The circuit for SUBm, was developed by modifying a 
ripple-carry binary adder with one of inputs permanently 
set equal to the two's complement of m,. This way design- 
ing SUBm, for any m, becomes trivial, and at the same 
time it gives us an elegant way (from (5 ) )  to find out 
whether RCBA is greater than or equal to m,. 

Area comparisons between our circuit and a PLA-based 
circuit, for m, = 13, shows a 51% savings in area. This 
reduction is due to the fact that the PLA realization 
requires the minimization of a 256-row truth table (eight- 
input, four-output PLA). Speed comparisons, for a 0.2-pF 
load, show that our circuit is negligibly slower (about 2 ns) 
than the PLA-based circuit. This enormous area savings 
was instrumental in achieving a single-chip implementa- 
tion. 

f -. 

B. Modulo mi Subtractor 

The residue subtractor, in [7], is based on the same 
principles as the residue adder described in [7]. There- 
fore, our residue subtractor circuit, which is also similar 
to the residue adder described in Section III-A, has a 

1 I 

Fig. 3. Residue subtractor block diagram. 

similar degree of advantage over the residue subtractor 
in [71. 

This circuit was needed in the residue-to-binary con- 
verter. In a fashion similar to the design of the modulo m, 
adder, we first subtracted the two inputs (Fig. 3) in a 
conventional ripple-borrow binary subtractor (RBBS). The 
number m, was then added to the output of RBBS 
(RBBS) in the circuit ADDm,. The final borrow from 
RBBS was used to select between RBBS and the output 
of ADDm, (ADD,,). Though a PLA realization of the 
modulo m, subtractor was not explicitly done, our experi- 
ence with the modulo m, adder would indicate that area 
savings of similar magnitude had resulted due to this 
circuit. For m, = 13, the subtractor occupied an area of 
72420 p m 2  and had a delay of 20 ns for a load of 0.2 pF. 

C. Modulo mi Multiplier 

Residue multipliers available in literature are the 
square-law multiplier [9], [lo] (Fig. 4(a)) and the index 
calculus multiplier [17] (Fig. 4(b)). In the square-law mul- 
tiplier (Fig. 4(a)), apart from two squaring ROM's, we 
also need three residue adders. This was found to be 
expensive in terms of area, for our application. The index 
calculus multiplier (Fig. 4(b)) requires three ROM's and a 
high precision at the output of the index ROM's. Other 
efficient multiplier circuits [ 111-[ 131 require a specialized 
moduli set of the type [2n-1,2",2n+1]. Therefore, we 
opted for a PLA-based multiplier with input encoding. 
This circuit was found to be most area efficient. 

An input encoding scheme [14] was incorporated for 
reducing the number of product terms in the PLA. In a 
conventional PLA, we feed the input and its complement 
to the AND plane. In an encoded PLA, we pair the inputs, 
say x, and x,, and feed x1 V x,, x ,  V X,, X1 V x,, and 
X I  V i,. In both cases the number of input lines finally 
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(C) (d) 

realization of a modulo 7 multiplier. 
Fig. 4. Residue multipliers: (a) square-law, (b) index calculus, and (c) an encoded PLA, and (d) a conventional PLA 

passing through the AND plane is the same. Hence, the 
width of both PLAs is the same and if the input pairings 
are optimal then a substantial reduction in the number of 
product terms makes the encoded PLA smaller in area. 
For the sake of comparison, we show the layouts of the 
encoded and conventional PLA (Fig. 4(c)) accomplishing 
the same logic function (modulo 7 multiplier). It is to be 
noted that this reduction in area is partially offset by the 

presence of encoders and also depends on the logic 
function being realized. 

In order to determine the optimal input pairings, there 
are quite a few heuristic algorithms [14]. In our applica- 
tion, and as would be the case in most residue number 
applications, as the bit width of the inputs was small (a 
maximum of four for each operand), an exhaustive search 
was resorted to for the determination of optimal input 
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pairings. The software package called ESPRESSO-MV 
[151 was employed to minimize the multiplier truth table 
with input pairings. During the course of the simulations, 
an interesting feature was observed with regard to the 
optimal input pairings of multipliers of different moduli. 
It was observed that for a particular moduli, say mi, both 
the modulo mi adder and modulo mi multiplier have the 
same optimal input pairings. In addition, the optimal 
input pairing, for a two n-bit operand residue multiplier 
or adder is generated by combining the ith bits of each 
operand. Though we are not providing any theoretical 
basis for this observation, it can be used as an heuristic 
guide. 

Area and delay comparisons show that for mi = 13 a 
net reduction in area (taking into account the area occu- 
pied by the encoders) of 21% was achieved, while for the 
same load capacitance of 0.2 pF, the delays were nearly 
equal (47 ns). The area reduction for a residue multiplier 
is highly dependent on the modulus. In our case, the 
multipliers for all other moduli had reductions in area of 
a similar magnitude. 

D. Binary-to-Residue Conuerter 

In [161, an algorithm for the binary-to-residue converter 
(BTOR) is formulated, for a general base. It requires two 
levels of modulo m, adders, though for binary input the 
first level may be eliminated. In any case, a simple analy- 
sis showed that for 8-b input data, we need seven modulo 
m, adders and eight MUX2X 1's. Our circuit uses the 
same technique as the one suggested by the authors 
in [171. 

We represent an 8-b number X as follows: 

X = 24B, + B, (6) 

where B, and B, are the four most and least significant 
bits of X ,  respectively. Therefore 

( X )  mod ( m , )  = (z4B,,,, + BL) mod ( m , )  

= [ (24~, )mod(m,) ]  e m ,  [ ( ~ L ) m o d ( m , ) I  

em, [ (BL)mod(m,)I .  (7) 

= [ (24)  mod ( m i >  @m, ( BM) mod ) ]  

As BM and B, are both 4-b numbers, two PLA's with at 
most 16 product terms each and a modulo m, adder, 
described in Section 111-A, would be required. The circuit 
block diagram (Fig. 5) shows that PLAl computes the 
first term ((24)mod(m,)@m, (B,)mod(m,)) while PLA2 
computes the second ((B,)mod(m,)). This technique re- 
sulted in a very compact circuit. 

A straightforward PLA realization of BTOR for m, = 13 
showed that an area of 619 pmX774 p m  would be 
required. Area and speed comparisons for m, = 13 were 
made. Thus a 71% area reduction was achieved with this 
technique. Speed comparisons show that the new circuit 
is about 8 ns faster than the previous one, again for a load 
of 0.2 pF. As three data streams had to be converted into 

PLA I 

[j L 

Q 
PLA2 

1.1- I "'i 
Fig. 5. Binary-to-residue converter. 

residue, in each cycle, this area reduction was instrumen- 
tal in achieving a single-chip implementation of the filter. 

E. Residue-to-Binary Converter 

Many techniques for output translation exist in the 
literature [16]-[22]. All of them are based either on the 
mixed radix conversion (MRC) method [6] or the Chinese 
Remainder Theorem (CRT) [21]. The method described 
in [16] is similar to MRC and is sequential in nature. In 
[17], the authors present a method based on the CRT 
using the vector multiplication algorithm of Peled-Liu 
[23]. Similarly, in [18], a method based on MRC and the 
algorithm of Peled-Liu [23] is presented. Some methods 
[19] are restricted to a special moduli set of the type 
[2" + 1,2",2" - 11. A unique technique, based on the CRT 
1211, is presented in [201. Here modulo M addition, where 
M is the dynamic range, is replaced by a simpler FRAC 
operation. This operation deals with the fractional part of 
the operands of the modulo M addition. Yet another 
method involving parallelization of the MRC algorithm is 
given in [22]. 

The above-mentioned methods cannot be pipelined 
easily as they either require a large number of latches or 
are sequential in nature or both. Our technique, though, 
based on the MRC method, can be easily pipelined. This 
is because our method relies on combining two moduli at 
a time (Fig. 6(a)) to generate a tree structure. Pipelining 
latches can then be placed on appropriate branches. In 
this particular implementation, moduli pairs (13,4), (11, 5 ) ,  
and (9,7) were combined in the first level to generate a 
new moduli set (52,55,63). In the second level, moduli 52 
and 55 were combined to generate representation in 
modulo 2860, which was then combined with modulus 63, 
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Fig. 6 .  Residue-to-binary converter: (a) system architecture and 
(b) block diagram for achieving the combination of two moduli. 

in the last level, to obtain the final answer in modulo 
1801 80. 

The combination of two moduli was done using the 
conventional mixed radix algorithm [7] (Fig. 6(b)), where 
the function F is defined as 

where Il/m,l,, denotes the multiplicative inverse of m, 
with respect to m,. Hence, it is important that the moduli 
pair ( m L , m J ) ,  which are to be combined, should be such 
that the smaller of the two should have a multiplicative 
inverse with respect to the other. This can be seen to be 
true in our case. A PLA was employed to realize the 
function F.  For MC180180, it was found that this PLA 
would have 2857 terms after minimization, which was too 

expensive in terms of area. Therefore, we split this PLA 
into two, using Theorem 1, which is stated below. 

Theorem 1: Any four positive integers A ,  B ,  C, and D 
always satisfy the following relation: 

( A@D B )  . C = ( A  .C)  @(D.cl ( B . C ) .  (9) 
The proof of this Theorem is given in the Appendix. 

Let X be the input to the PLA, which in this case has 
12 inputs. Therefore, following an approach similar to (6) 
we write X as 

x = 26x ,  + x, (10) 
where X ,  is the most significant and X ,  is the least 
significant six bits of X .  We wish to multiply X by the 
number 227 modulo 2860, where 227 is the multiplicative 
inverse of 63 with respect to 2860, and then multiply the 
result by 63, to generate the output of the PLA. There- 
fore, we carry out the residue multiplication first 

X@2x60 227 = ( 2 6 X ,  + X,) @22860 227 

= (26xM @2860 227) @22860 ( xL @2860 227) 
= ( xM @22860 228) @22860 ( X.L @22860 227) ( ‘1 

then multiply (11) by 63 
( X @2x60 227) .63 

= [ ( xM @22860 228) @2860 ( X12@22860 227) 1 ‘ 63 ’ ( 12) 
We see that the right-hand side of (12) is of the same 
form as the left-hand side of (9), where A = X,,,,@22860 228, 
B = X,@2x60 227, C = 63, and D = 2860. Hence, employ- 
ing identity (9) we get 

( XB2,,,, 227) .63 

We realized the expressions ( X ,  @22860 228).  63 and 
( X ,  @22860 227).63 by two PLAs. It may be noted that 
through this exercise we have split the original 12-input 
PLA into two six-input PLA’s. The total number of prod- 
uct terms in the two resultant PLA’s was 111, a reduction 
of 96%. Through this process we have enhanced the 
speed of the circuit too, though we pay the penalty of 
having a large modulo adder. 

IV. THE FILTER ARCHITECTURE 

Filter architectures based on RNS are known to be 
efficient for variable coefficient filters, while the combina- 
torial architecture of [23] gives higher speed/cost ratios 
for fixed-coefficient filters. This is because the latter 
eliminates the need for multiplication. In [24], the author 
provides a hybrid architecture, which combines the advan- 
tages of both the architectures, though it is still applicable 
only for fixed coefficient filters. We chose a completely 
RNS-based approach as we were interested in a variable 
coefficient filter. Moreover, as we wished to avoid the use 
of array-based structures as much as possible, this ap- 
proach was quite suitable. 

Previous RNS-based filter designs [171, [25], [26] were 
mainly for one-dimensional filtering. The existing two- 
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Fig. 7. Filter: (a) architecture and (b) stage 2 details. 

dimensional RNS filters [27], [28] are not single-chip 
implementations. A simple analysis in [ 171 showed that 
for most practical purposes a dynamic range of 17 to 18 b 
is sufficient, for an 8-b data and coefficient representa- 
tion. Therefore, we chose the moduli set [4, 5 ,  7, 9, 11, 
131, which gives a dynamic range of 180180 (17.37 b). 

The architecture of the filter (Fig. 7(a)) is similar to 
that in [25], though ours is a two-dimensional filter. It can 
be seen that the chip is pipelined into four stages. In 
order to conserve space, we have used dynamic latches. In 
the first stage (stage 1) binary data are converted into 
residue. As we use a 3 X 3 window (Fig. 11, in each clock 
cycle we input three new 8-b data. As each modulus 
requires three converters, the first stage contains 18 
BTOR’s in all. 

The actual filtering operation takes place in the second 
stage (stage 2). The block diagram (Fig. 7(b)), of the 
second stage of one modulus shows that three sets of 
latches are required in order to form the 3x3 window, 
which are then processed according to (4). For most 

image processing applications it is desirable that the filter 
have linear-phase characteristics. This is the reason for 
having symmetric coefficient mask (Fig. 1). This symmetry 
also resulted in considerable area savings. As compared 
to other stages, this one was the slowest. Given the area 
restrictions due to the fabrication die size (6.6 X 4.2 mm2), 
it was not possible to pipeline this section any further. 

The third and fourth stages convert the result of the 
filtering operation back to binary. In the third stage (stage 
3), moduli pairs (4, 131, (5, l l ) ,  and (7, 9) are combined in 
MC52, MC55, and MC63, respectively. In this stage itself, 
we combine the outputs of MC52 and MC55 in MC2860. 
In the last stage (stage 4), the outputs of MC63 and 
MC2860 are combined in MC180180, to generate the final 
18-b answer. 

It must be mentioned that the area reductions, realized 
by the unique circuits presented in Section 111, played a 
crucial role in the successful realization of this architec- 
ture. The testability and timing features are described 
next. 
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V. TIMING AND TESTABILITY FEATURES 
The chip is synchronized with a two-phase nonoverlap- 

ping clock generated on chip, from a single clock input. 
All latches are therefore dynamic and two phase. In the 
first phase 41,  the primary inputs and the output of each 
stage of the pipeline are loaded into the master section of 
the corresponding latch. Each stage of the pipeline then 
receives inputs for the current cycle, in the second phase 
(42 ) .  Hence, each stage has 42 of the current cycle and 

of the next cycle to carry out the computation for the 
current cycle. In the first three cycles, we input the 
coefficients through the normal data input and activate a 
LOAD signal to store them. Subsequently, three 8-b data 
are input and an output is obtained every cycle. The 
maximum clock rate was measured to be 5.6 MHz. Em- 
ploying the scan-path facility, described later, the speed 
of each stage was measured independently. As predicted 
by the simulations, stage 2 had a maximum delay of 180 
ns. Stages 1, 3, and 4 had delays of 130, 110, and 130 ns, 
respectively. As mentioned before, given slightly less area 
restrictions, we could have introduced an extra stage of 
pipeline in stage 2. Yet, given the slower CMOS technol- 
ogy, it compares well with the clock rate of twenty million 
operations per second reported in [27],  which had utilized 
the faster emitter-coupled logic (ECL). Also, due to ours 
being a single-chip implementation, significantly less 
power is being consumed per operation. In fact, the 
power dissipation was measured to be 220 mW at the 
maximum clock rate. 

Incorporation of testability features in VLSI chips is a 
recognized necessity. We have used the scan-path tech- 
nique [29] to enhance the testability of our chip. After 
fabrication, extensive use of this facility was done to 
determine the correct operating conditions of the chip. In 
addition, it enabled us to determine the maximum speed 
of each stage of the pipeline. For implementing scan-path 
testing, special latches had to be introduced. These latches 
(Fig. 8 )  passed data from the BTOR’s in their normal 
mode ( S C A N =  0) of operation. In the scan mode 
(SCAN = l), they were configured into a shift register 
with an external input (SCANIN) and an external output 
(SCANOUT). These scan latches were placed at the 
inputs of stages 2, 3, and 4. The control signals 4 1 1  and 
c$12 were generated by the following logic expression: 

411 =SCAN V @ v  4 2  (14) 

412 = S C A N v 4 1 v  4 2 .  (15) 
- -  

An interesting feature introduced by this unique combi- 
nation of scan-path testing and residue arithmetic is the 
possibility of loading filter coefficients with precision 
greater than 8 b. This can be done through the SCANIN 
input of stage 2, where we serially input the coefficient 
bits. As the coefficients have to be input in residue form, 
any degree of coefficient precision can be achieved. The 
precision of the data would then have to be reduced 
correspondingly, in order to generate the results within 
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Fig. 8. Scan-path testing scheme. 

the dynamic range. This feature was actually confirmed 
during the testing phase, when coefficients with a value of 
300 (greater than the maximum of 255 allowed by the 8-b 
data input channels) were input. 

VI. CONCLUSIONS 

Design of certain novel residue arithmetic circuits is 
presented. Unlike most existing residue circuits, these 
have been built with the philosophy of having minimum 
array-based structures in them. Therefore, some circuits 
are completely algorithmic (nonarray based), others 
PLA-based, and the remaining are a hybrid of the two 
approaches. The residue adder, for example, is a com- 
pletely algorithmic structure, while the residue multiplier 
is realized using an encoded PLA. For residue-to-binary 
converter, we employed the conventional MRC algorithm 
in a different way. The resultant tree-like architecture 
was found to be highly convenient for pipelining. Given 
the fact that it is the input/output conversion in RNS- 
based systems that form a major bottleneck when aiming 
for a high throughput, this feature of our technique is 
highly desirable. Theorem 1 was employed to split a large 
PLA in the module MC180180, which resulted in a 96% 
reduction in the number of product terms. Area and 
speed comparisons are presented for a completely array- 
based approach and ours. While the reductions in area 
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Fig. 9. Photomicrograph of the filter chip. 

range from 21% to 71%, the speed is more or less the 
same. 

These circuits were designed with the aim of realizing a 
single-chip implementation of a signal processor based on 
residue arithmetic. It can be seen that this is not the case 
with existing implementations [271, [28]. Employing these 
circuits, we have successfully fabricated and tested a 
single-chip two-dimensional FIR filter with variable coef- 
ficients. The filter has a 3 x 3  window with symmetric 
coefficients. The chip has been fabricated in a 64-pin 
dual-in-line package with a die size of 6.6X4.2 mm2, 
using the 2-pm CMOS technology from MOSIS. It has a 
5-V power supply. The chip operates correctly at a maxi- 
mum clock frequency of 5.6 MHz and dissipates 220 mW 
of power. Given the difference in technology, the speed 
achieved compares well with that of 1271, though our 
power consumption-per-logic operation is clearly superior 
due to the single-chip implementation. The chip has a 
pipelined architecture and incorporates scan-path 
testing. This combination of scan-path testing along with 
residue arithmetic has afforded a way of trading off 
coefficient precision with that of the data. Since the 
coefficients are variable it can be used in an adaptive 
environment. A photomicrograph of the chip is shown in 
Fig. 9. 

We envisage substantial improvements in speed by in- 
corporating carry-select adders instead of the ripple-carry 
adder in the circuit modules. Though we have imple- 
mented a 3 x 3  window, it is possible to realize higher 
order filters using the same architecture and with a larger 
die size or a 1-pm CMOS technology. With an extra 
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6 x 6 ,  order filter with four of the currently designed 
chips. 

APPENDIX 

To prove Theorem 1 we need the following Lemma. 
Lemma 1: Any three positive integers A ,  B ,  and D, 

each of which is divisible by C, satisfy the following 
relation: 

Proof: Let 
A B  
- + - = E .  c c  

Given any E ,  the following always holds true: 

nD ( n + l ) D  
(A31 C 

- < E <  
C 

for some n = 0,1,2, . . . . Again, from (A21 we get 

($ + :)mod (g ) = (,?)mod (g ) 

Multiplying (A4) by C we get 

[ (g) eDlc( g ) ] . C  = EC - nD 

= ( A  + B )  - nD 

= ( A eD B )  . Q.E.D. 

The proof of Theorem 1 is now trivial. 
Proof of Theorem I :  Let A ‘ =  A . C ,  B ’ =  B.C,  and 

D’ = D .  C. Therefore, A‘, B‘,  and D’ are divisible by C 
and hence by Lemma 1, we get 

A’eDfB’= -@Df,c-  .c 
C 

= ( A@, B )  . C .  Q.E.D. 
(;” *‘I 
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