WP13 2:30 On the Stability of Polygons of Polynomials with an Application : An Alternative Proof of the Edge Theorem

L.R. PUJARA* and NARESH R. SHANBHAG**

Department of Electrical Engineering Wright State University, Dayton, Ohio-45435

Abstract

In this paper, we present some results related to the stability of polygons of real polynomials. These results are then used to test the stability of the two-dimensional exposed faces of a polytope of polynomials. The results are also used to give an alternative proof of the Edge Theorem.

1. Introduction

Kharitonov's Theorem [8] followed by the Edge Theorem of Bartlett, Hollot and Lin [3], have inspired a large number of research papers in the field of robust control, [2,4,9,10] being a small sample of this activity, and it is continuing to flourish due to its applications. All the existing techniques of checking the stability, of a polytope of polynomials [6,7,11], concentrate on the stability of the edges of the polytope. We have attacked this problem by checking the stability of the two dimensional faces of a polytope. First, we derive some necessary and sufficient conditions for a polynomial to vanish at $j\omega_0$, for some ω_0 , in a polygon of polynomials, in terms of the winding number function (to be defined later) of the polygon. These results are then used to develop a method for checking the stability of polytope of polynomials, whose efficiency is comparable to that of Anagnost, Desoer and Minnichelli [1]. Using these techniques, an alternative proof of the Edge Theorem [3] is given.

2. Notations and Main Results

The formal definition of a standard polygon is now given. Definition 2.1: A polygon of real polynomials will be called standard if

(i) it is convex, (ii) all the polynomials are of the same degree and (iii) its vertices are stable.

Notation 2.1: Let $f^{\epsilon}(s) = f_{\epsilon}(s)$ and $f^{o}(s) = f_{o}(s)/s$ where $f_{\epsilon}(s)$ and $f_{o}(s)$ denote the usual even and odd parts of f(s) respectively.

We now state a result of Chapellat and Bhattacharyya[5], which would be extensively used throughout the paper.

Theorem 2.1 [5]: A convex combination of two polynomials, $f_1(s)$ and $f_2(s)$, vanishes at some $s = j\omega_0$ iff

$$\begin{aligned} f_1^{\epsilon}(\omega_0) f_2^{\epsilon}(\omega_0) - f_1^{\epsilon}(\omega_0) f_2^{\epsilon}(\omega_0) &= 0\\ f_1^{\epsilon}(\omega_0) f_2^{\epsilon}(\omega_0) &\leq 0\\ \text{and} \quad f_1^{\epsilon}(\omega_0) f_2^{\epsilon}(\omega_0) &\leq 0 \end{aligned}$$

Notation 2.2 : Suppose $A_1, A_2, A_3, \ldots, A_n$ are the vertices of a standard n-sided polygon and $f_1(s), f_2(s), \ldots, f_n(s)$ are the polynomials representing them. With each pair of vertices A_i, A_j of this polygon, we associate a frequency-dependent function $X_{i,j}(\omega)$ defined as follows:

$$X_{i,j}(\omega) = f_i^{\epsilon}(\omega) f_j^{o}(\omega) - f_j^{\epsilon}(\omega) f_i^{o}(\omega)$$

where $(i, j) \in S_n$, $S_n = \{(i, j) : i \in N_n, j \in N_n, i \neq j\}$, $N_n = \{i : 1 \leq i \leq n\}$. Note that $X_{i,j}(\omega)$ and $X_{j,i}(\omega)$ differ only by sign. Henceforth an n-sided polygon will be denoted by P_n . In order to specify the vertices of a triangle explicitly, we employ the notation $\Delta_{i,j,k}$, where A_i, A_j, A_k are its vertices.

For the sake of convenience, we will employ the notation

$$\sum_{(i,j)=(1,2)}^{(n,1)} X_{i,j}(\omega) = X_{1,2}(\omega) + X_{2,3}(\omega) + \cdots + X_{n,1}(\omega)$$

Definition 2.2: For a standard n-sided polygon P_n , of polynomials, we define a frequency-dependent winding number function $S(\omega)$ as follows:-

$$S(\omega) = \sum_{(i,j)=(1,2)}^{(n,1)} Sgn(X_{i,j}(\omega))$$

where

$$Sgn(X_{i,j}(\omega)) = \begin{cases} 1 & \text{if } X_{i,j}(\omega) > 0\\ -1 & \text{if } X_{i,j}(\omega) < 0\\ 0 & \text{if } X_{i,j}(\omega) = 0 \end{cases}$$

Remark 2.1: It is easy to check that the sign of each $X_{i,j}(\omega)$ depends on the segment joining the end-points and not on the end-points.

We now state some theorems, which deal with a standard triangle of polynomials.

Proposition 2.1: In a standard polygon P_n , if n-1 sides have their corresponding $X_{i,j}(\omega_0)$'s equal to zero, for some ω_0 , then the n^{th} side also has its $X_{i,j}(\omega_0)$ equal to zero.

Theorem 2.2: If a polynomial f(s) in a standard triangle $\Delta_{1,2,3}$ vanishes at $j\omega_0$, for some ω_0 , then

$$\left(\begin{array}{ccc} X_{i,j}(\omega_0) \geq 0, \forall \quad (i,j) \in S_3 \quad or \quad X_{i,j}(\omega_0) \leq 0, \forall \quad (i,j) \in S_3 \end{array} \right)$$
Theorem 2.3: If, for some ω_0

$$\begin{pmatrix} X_{i,j}(\omega_0) \ge 0, \forall \quad (i,j) \in S_3 \quad or \quad X_{i,j}(\omega_0) \le 0, \forall \quad (i,j) \in S_3 \end{pmatrix}$$

$$and \quad \sum_{\substack{(i,j)=(1,2)}}^{(3,1)} X_{i,j}(\omega_0) \ne 0$$

then there exists a unique polynomial f(s) in $\Delta_{1,2,3}$, which vanishes at $j\omega_0$.

Now we present some corollaries derived from Theorem 2.2 and Theorem 2.3.

Cor. 2.1 : If a polynomial within a standard triangle, P_3 vanishes at $j\omega_0$, then $S(\omega_0) = \pm 3$ or 0.

Cor. 2.2 : If $S(\omega_0) = \pm 3$, then there exists a unique polynomial, in the interior of the triangle, which vanishes at $j\omega_0$. Cor. 2.3 : If a polynomial on an edge of a standard trian-

gle, P_3 , vanishes at $j\omega_0$ then $S(\omega_0) = \pm 2$ or 0.

Cor. 2.4 : If $S(\omega_0) = \pm 2$, then a polynomial on one edge of the standard triangle vanishes at $j\omega_0$.

3. Results for a Polygon of Polynomials

Proposition 3.1 : If $S(\omega_0) = 0$, for some ω_0 , for a polygon P_n , then either there is no polynomial vanishing at $j\omega_0$ in P_n , or a line of polynomials, vanishing at $j\omega_0$, intersects the polygon.

Definition 3.1 : A peripheral chord, $PC_{i,j}$, of P_n , is the line segment connecting the vertices A_i and A_j , of P_n , such that |i-j| = 2.

Theorem 3.1 : If P_n is a standard polygon, and if $S(\omega_0)$ equals $\pm n$ or $\pm (n-1)$, for some ω_0 , then there exists a unique polynomial f(s), in P_n , which vanishes at $j\omega_0$. **Proof :**

^{*} Associate Professor

^{**} Graduate Assistant

Note that Theorem 2.3 is a special case of Theorem 3.1, for n = 3. Therefore, we give the proof for $n \ge 4$.

We first prove that if $S(\omega_0) = \pm n$, then a polynomial vanishes in the interior of P_n .

Case I : Assume without loss of generality that $S(\omega_0) = \pm n$. The proof will be given by induction for $n \ge 4$. Assume

that the statement of Theorem 3.1 is true for n-1. Partition the polygon P_n , by the peripheral chord $PC_{i-1,i+1}$, into a standard triangle, P_3 with

 A_{i-1}, A_i, A_{i+1} as its vertices and a standard polygon P_{n-1} .

Without loss of generality assume that $S(\omega_0) = n$ for P_n .

We split the proof into two cases depending on the sign of $X_{i-1,i+1}(\omega_0)$.

Case I(a) : Suppose $X_{i-1,i+1}(\omega_0) = 0$.

By applying Cor. 2.4, to P_3 , we conclude that the chord $PC_{i-1,i+1}$ has a polynomial f(s) vanishing at $j\omega_0$. Since, this polynomial also lies within P_n , we are done.

Case I(b) : Suppose $X_{i-1,i+1}(\omega_0) \neq 0$.

If $X_{i-1,i+1}(\omega_0) > 0$, then $S(\omega_0) = n - 1$, for P_{n-1} . Therefore, by the induction hypothesis, a polynomial within P_{n-1} , and hence within P_n , vanishes at $j\omega_0$. On the other hand, if $X_{i-1,i+1}(\omega_0) < 0$ then $S(\omega_0) = 3$ for P_3 . By Cor. 2.2, a polynomial within P_3 , and hence within P_n , vanishes at $j\omega_0$.

Case II : Suppose $S(\omega_0) = \pm (n-1)$.

Let A_iA_{i+1} be the side, which has $X_{i,i+1}(\omega_0) = 0$, while all other $X_{i,j}(\omega_0)$'s are non-zero and of the same sign. Without loss of generality, assume that $S(\omega_0) = n - 1$ for P_n . Now, construct the peripheral chord $PC_{i-1,i+1}$, which partitions the polygon P_n , into a standard triangle, P_3 with A_{i-1}, A_i, A_{i+1} as its vertices and a standard polygon P_{n-1} .

It is clear that $X_{i-1,i+1}(\omega_0) \neq 0$, otherwise, by Prop. 2.1, P_3 , which has two sides $(A_iA_{i+1} \text{ and } A_{i-1}A_{i+1})$ with $X_{i,j}(\omega_0)$'s equal to zero, would have $X_{i-1,i}(\omega_0)$ equal to zero, for the third side. This contradicts the fact that for P_n , $S(\omega_0) = n-1$. Also, $X_{i-1,i+1}(\omega_0)$ cannot be positive, otherwise by Case I, we would have another polynomial vanishing at $j\omega_0$, in P_{n-1} , which would imply that at least two sides of P_n have their corresponding $X_{i,j}(\omega_0)$'s equal to zero. This would imply that $S(\omega_0) < n-1$ for P_n , which is a contradiction to the hypothesis. The only possibility is that $X_{i-1,i+1}(\omega_0) < 0$. Then, $S(\omega_0) = 2$, for P_3 , and hence by Cor. 2.4 there exists a polynomial on the side A_iA_{i+1} , which vanishes at $j\omega_0$. Q.E.D.

We now, present some corollaries, obtained from Theorem 3.1, the proofs of which are easily derivable from the proof of Theorem 3.1.

Cor. 3.1 : A unique polynomial vanishes in the interior of a standard polygon P_n , if $S(\omega_0) = \pm n$ for P_n .

Cor. 3.2: A unique polynomial vanishes on an edge of a standard polygon P_n , if $S(\omega_0) = \pm (n-1)$ for P_n .

Theorem 3.2: If a polynomial f(s) in a standard polygon P_n , vanishes at $j\omega_0$, for some ω_0 , then $S(\omega_0)$ equals $\pm n, \pm (n-1)$ or 0.

4. Applications

First, we give an algorithm for checking the stability of a polygon of polynomials, which could be used to test the stability of a polytope of polynomials.

Suppose the polygon has n sides.

(1) Compute $X_{i,j}(\omega)$, for each edge of the polygon. Find the zeros of each $X_{i,j}(\omega)$ and sketch their graphs against ω . As we are interested only in the signs of the $X_{i,j}(\omega)$'s, these graph don't have to be drawn accurately.

(2) If $S(\omega) \neq \pm n$, $\pm (n-1)$ or 0, for any ω , then the polygon is stable.

(3) If $S(\omega_0) = 0$ for some ω_0 , then either the polygon is stable or a line of polynomials intersects two edges of the polygon. This can be ascertained by applying Proposition 3.1.

Algorithm for checking the stability of a polytope of polynomials.

It is being assumed that the polytope's two-dimensional

faces are explicitly known.

Check the stability of each two-dimensional face of the polytope by using the procedure as outlined above. If each two dimensional face is stable, then by the Edge Theorem [3], the polytope is stable.

As another application, we provide an alternative proof of the Edge Theorem [3].

Theorem 4.1 [3]: If the exposed edges of a polytope of polynomials are stable, then the polytope is stable.

We first need a technical lemma. Its proof will appear elsewhere.

Lemma 4.1 : If for a standard polygon, $S(\omega_0) = \pm n$ for some ω_0 , then there exists a frequency ω_1 such that at least one edge of the polygon has a polynomial vanishing at $j\omega_1$.

Proof of the Edge Theorem [3] :

Suppose the claim is false and there exists a polynomial g(s), within the polytope, which is unstable. By [Lemma 1,[3]], we can assume that there exists a polynomial f(s), within a two-dimensional exposed face F of the polytope, which vanishes at $j\omega_0$ for some ω_0 . Clearly, no other polynomial, $f_1(s)$ in F, can vanish at $j\omega_0$ because then the whole line joining $f_1(s)$ and f(s), will vanish at $j\omega_0$ and intersect the stable edges of F. This would lead to a contradiction. Then by Theorem 3.2, either $S(\omega_0) = \pm n, \pm (n-1)$ or 0. If $S(\omega_0) = \pm (n-1)$, then by Cor. 3.2, there is a polynomial on an edge of the polygon vanishing at $j\omega_0$, which is a contradiction. If $S(\omega_0) = 0$, then either there is no polynomial in F, vanishing at $j\omega_0$ or a line of polynomials vanishing at $j\omega_0$, which intersects the face F. Either of these two possibilities leads to a contradiction. Consider now the only remaining case of $S(\omega_0) = \pm n$. In this case, by Lemma 4.1, there exists a frequency ω_1 such that at least one of the edges of the polygon has a polynomial vanishing at $j\omega_1$. But this also is not possible as the edges are stable. Q.E.D.

References.

[1] J.J. Anagnost, C.A. Descer, and R.J. Minnichelli,

"Graphical stability robustness test for linear time-invariant systems : Generalization of Kharitonov's stability theorem", Proc. of the 27th Conf. on Decision and Control, pp. 509-514, 1988.

[2] B.R. Barmish, "A generalization of Kharitonov's four-polynomial concept for robust stability problems with linearly dependent coefficient perturbations", *IEEE Trans. Automat. Contr.*, AC-34, pp. 157-165, 1989.

[3] A.C. Bartlett, C.V. Hollot, and H.Lin," Root locations of an entire polytope of polynomials : It suffices to check the edges", Math. Contro., Signals Syst., vol. 1, pp. 61-71, 1988.

[4] B.C. Chang, H.H. Yeh and S. Banda, "Computation of multivariable stability margin", 1989 AIAA, Guidance, Navigation and Control Conference.

[5] H. Chapellat and S.P. Bhattacharyya, "An alternative proof of Kharitonov's Theorem", *IEEE Trans. on Automat.* Contr., AC-34, pp. 448-450, 1989.

[6] S. Dasgupta, P.J. Parker, B.D.O. Anderson, F.J. Kraus and M. Mansour, "Frequency domain conditions for the robust stability of linear and nonlinear dynamic systems", *Proceedings* of 1988 American Control Conference (1988) 1863-1868.

[7] M. Fu, "Polytopes of polynomials with zeros in a prescribed region : new criteria and algorithms", Proc. of Intl. Workshop on Robustness in Identification and Control, pp. 125-145, 1988.

[8] V.L. Kharitonov, "Asymptotic stability of an equilibrium position of a family of systems of linear differential equations", *Differential Uravnen.*, vol. 14, pp. 2086-2088, 1978.

[9] L.R. Pujara, "On the stability of uncertain polynomials with dependent coefficients", to appear in the *IEEE Trans.* on *Automat. Contr.*, July 1990.

[10] S.B. Soh, C.S. Berger and K.P. Dabke, "On the stability of polynomials with perturbed coefficients", *IEEE Trans.* on Automat. Contr., AC-30, pp. 1032-1033, 1985.

[11] A. Tesi and A. Vicino, "Robustness analysis for uncertain dynamical systems with structured perturbations", Proceedings of the 27th IEEE Conference on Decision and Control, (1988) 519-525