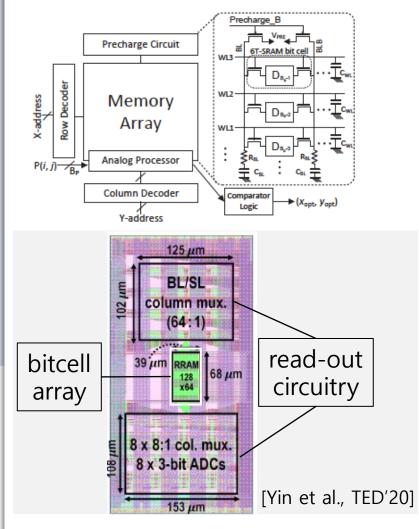


Fundamental Limits on the Computational Accuracy of Resistive Crossbar-based In-memory Architectures

Saion K. Roy¹, Ameya Patil², and Naresh R. Shanbhag¹

1: University of Illinois at Urbana-Champaign 2: Amazon Lab126


2022 IEEE International Symposium on Circuits and Systems May 28- June 1, 2022 Hybrid Conference

Outline

- Introduction
- Resistive Crossbar Architecture
- Behavioral Modeling
- Simulation Results
 - Model validation
 - Compute SNR analysis for MRAM, ReRAM, and FeFET crossbars
 - System level accuracy of ResNet-20 on CIFAR-10
- Conclusion

In-memory Computing (IMC)

compute memory

first IMC concept paper (ICASSP 2014)

AN ENERGY-EFFICIENT VLSI ARCHITECTURE FOR PATTERN RECOGNITION VIA DEEP EMBEDDING OF COMPUTATION IN SRAM

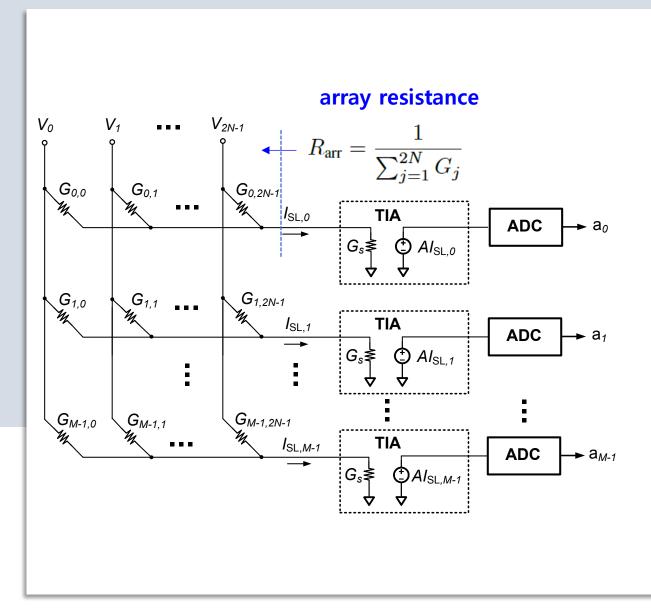
Mingu Kang*, Min-Sun Keel*, Naresh R. Shanbhag*, Sean Eilert[†], and Ken Curewitz[†]

*Dept. Electrical and Computer Engineering, University of Illinois at Urbana-Champaign †Micron Technology, Inc

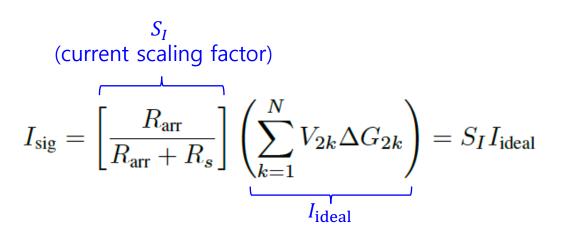
- computes a M×N matrix-vector multiply (MVM)
- SRAM-based IMC banks are mature → 20× lower energy + 9× higher compute density than digital¹
- eNVM-based (MRAM/ReRAM) IMCs have potential for high compute density but lags digital due to low compute SNR → this work explains why

Resistive Crossbar Architecture

voltage-drive current-sensing crossbar


differential inputs V_{2N-1} bit $G_{0.0}$ $G_{0.1}$ G_{0,2N-1} TIA I_{SL.0} ADC $\rightarrow a_0$ G₅≹ C Al_{SL.0} G_{1,1} **G**_{1,2N-1} $G_{1.0}$ TIA I_{SL.1} ADC → a₁ G₅≸ C Al_{SL.1} 、**G**_{M-1,1} ⊂G_{M-1,2N-1} G_{M-1,0} TIA $I_{SL,M-1}$ ADC → a_{M-1} G₅≸ $\bigcirc AI_{SL,M-7}$

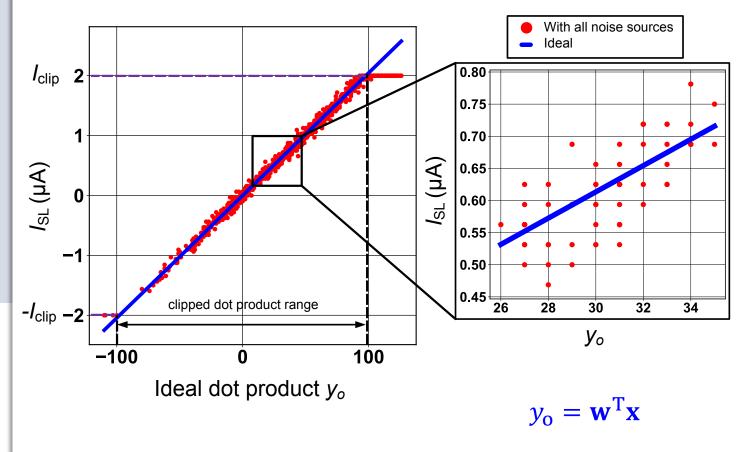
- computes a *M*×*N* matrix-vector multiply (MVM)
- V-DACs provide differential inputs on BLs ($V_{2k} = -V_{2k-1}$)
- two BCs (G_{2k-1}, G_{2k}) store 1 bit
- current summing & sensing on SLs
- device resistive contrast


$$o = \frac{R_{\rm off}}{R_{\rm on}}$$

2 (MRAM); 12 (ReRAM); 10³ (FeFET);

Behavioral Modeling

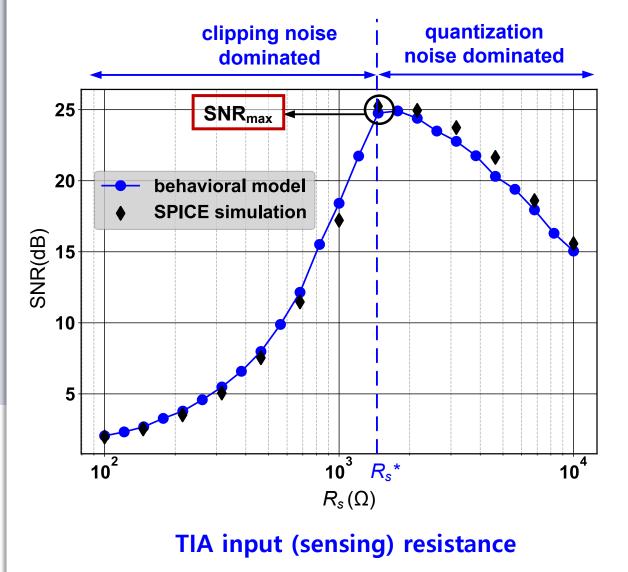
signal current in SL


total current in SL

 $\begin{array}{c} \text{quantization}\\ \text{DAC mismatch noise}\\ I_{\text{SL}} = I_{\text{sig}} + I_{\text{nb}} + I_{\text{nd}} + I_{\text{nc}} + I_{\text{nq}},\\ \text{conductance clipping}\\ \text{variation noise} \end{array}$

Results – Model Validation

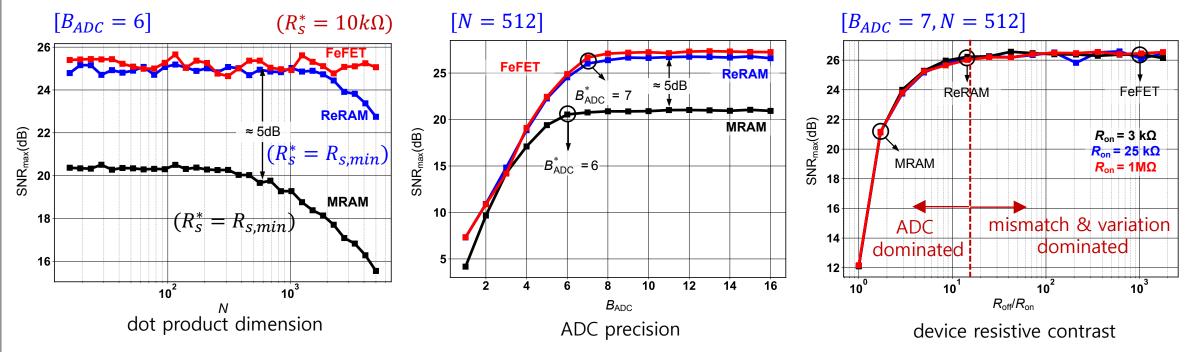
SPICE simulations in a 22nm process


 $N = 512, R_s = 316\Omega$, 6b ADC

- DAC input: signed 5b with $V_{\rm lsb} = 3 {\rm mV}$
- DAC mismatch: 4%
- Conductance variation: 4%
- ADC clipping range:
 [-2μA, +2μA]

 SL current varies due to analog non-idealities

Results – Compute SNR Analysis

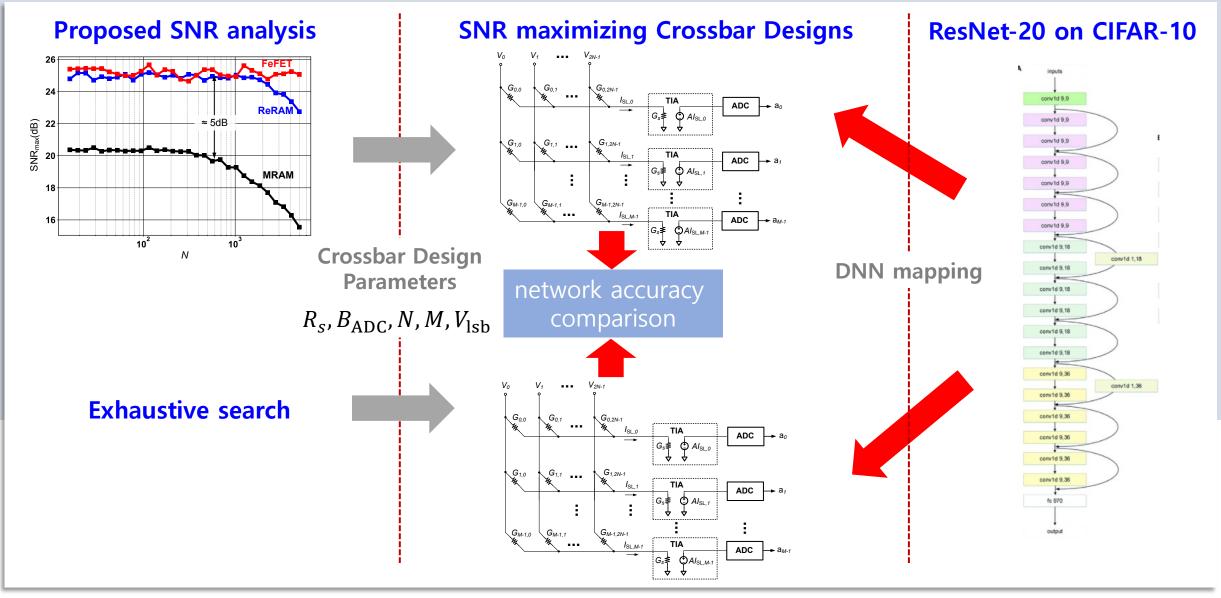

$$SNR = \frac{\mathbb{E}[I_{sig}^2]}{\mathbb{E}[I_{nb}^2] + \mathbb{E}[I_{nd}^2] + \mathbb{E}[I_{nc}^2] + \mathbb{E}[I_{nq}^2]},$$

- model and simulations match → further validates model
- ADC clipping vs. quantization noise trade-off:

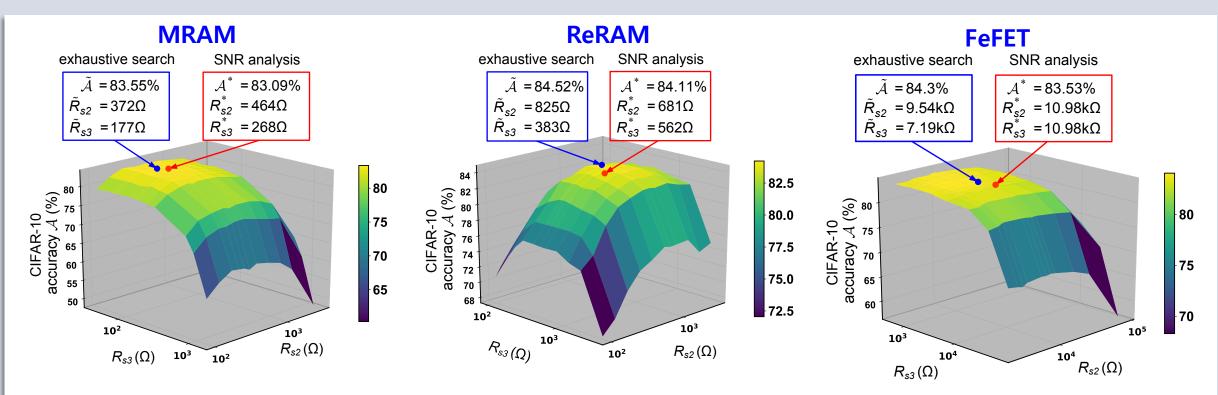
$$S_I = \left[\frac{R_{\rm arr}}{R_{\rm arr} + R_s}\right]$$

compute SNR maximized if R_s = R^{*}_s
 → clipping noise & quantization noise are equal

Results – SNR Dependence


- dimension \rightarrow small $R_{arr} \rightarrow$ small $R_s = R_{s.\min}(= 1k\Omega) \neq R_s^*$
- higher absolute R_{on} , R_{off} critical for high DP dimension

- SNR_{max} roll-off with higher DP minimum ADC precision B_{ADC}^* increases with SNR_{max}
 - SNR_{max} saturates for $B_{ADC} >$ $B^*_{ADC} \rightarrow \text{DAC}$ mismatch and G variations dominate
- increasing device resistive contrast beyond (~12-to-15) is futile


higher resistive contrast but...

SNR_{max} improves with

System Level Accuracy Prediction Set-up

Results – System Level Accuracy Prediction

- Baseline ResNET-20 on CIFAR-10: 5b input, ternary weights, accuracy = 84.94% (3-layer network)
- 3 Crossbars: N = 144, 288, 576; $R_{s1} = R_{s1}^*$; sweep (R_{s2}, R_{s3})
- SNR analysis predicted crossbar design achieves system-level accuracy to within 1% (exhaustive search) to within 2% of digital baseline value (84.94%)
- bank-level SNR is a good proxy for network level accuracy → SNR analysis bypasses trial & error

Conclusion

- proposed an analytical framework to obtain SNR-optimal resistive crossbar parameters → avoids expensive trial and error
- insights provided by the framework:
 - SNR-optimal sensing resistance R_s^* exists which equalizes the clipping and quantization noise in the column ADCs
 - system level inference accuracy is maximized when bank-level compute SNR is maximized
 - increasing device resistive contrast improves SNR up to a point (~12-15).
 Diminishing returns due to mismatch (input DACs) and variations (device conductance)
- proposed framework can be extended to other resistive IMC and devices

Thank You

saionkr2@Illinois.edu

Acknowledgement

Work supported by the Defense Advanced Research Agency (DARPA) and the Semiconductor Research Corpor ation (SRC) via the FRANC Program, and the Center for Brain-inspired Computing (C-BRIC).