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In-memory Computing (IMC)
compute memory first IMC concept paper (ICASSP 2014)

§ computes a 𝑀×𝑁 matrix-vector multiply (MVM)
§ SRAM-based IMC banks are mature → 20× lower 

energy + 9× higher compute density than digital1

§ eNVM-based (MRAM/ReRAM) IMCs have 
potential for high compute density but lags digital 
due to low compute SNR → this work explains why

1N. R. Shanbhag and S. K. Roy, “Comprehending In-memory Computing Trends via Proper Benchmarking,” CICC 2022 (invited)

[Yin et al., TED’20] 

read-out
circuitry

bitcell
array



4

Resistive Crossbar Architecture
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§ computes a 𝑀×𝑁 matrix-vector 
multiply (MVM)

§ V-DACs provide differential inputs on 
BLs (𝑉!" = −𝑉!"#$)

§ two BCs (𝐺!"#$, 𝐺!") store 1 bit
§ current summing & sensing on SLs
§ device resistive contrast

𝜌 =
𝑅%&&
𝑅%'

2 (MRAM); 12 (ReRAM); 103 (FeFET);

voltage-drive current-sensing crossbar

1 bit

differential inputs

[A. Patil et al., ISCAS 2019]
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Behavioral Modeling
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§ signal current in SL

§ total current in SL

𝑆!
(current scaling factor)

array resistance

𝐼"#$%&

conductance
variation

clipping
noise

quantization
noiseDAC mismatch
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Results – Model Validation
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§ DAC input: signed 5b with 
𝑉()* = 3mV

§ DAC mismatch: 4%
§ Conductance variation: 4%
§ ADC clipping range: 

[−2𝜇𝐴,+2𝜇𝐴]

§ SL current varies due to 
analog non-idealities

SPICE simulations in a 22nm process

𝑦! = 𝐰"𝐱

𝑁 = 512, 𝑅! = 316Ω, 6b ADC
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Results – Compute SNR Analysis
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§ model and simulations match →
further validates model

§ ADC clipping vs. quantization noise
trade-off:

§ compute SNR maximized if 𝑅5 = 𝑅5∗

→ clipping noise & quantization noise
are equalTIA input (sensing) resistance
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Results – SNR Dependence
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§ SNRmax roll-off with higher DP 
dimension → small 𝑅#$$ → small 
𝑅% = 𝑅%,'()(= 1𝑘Ω) ≠ 𝑅%∗

§ higher absolute 𝑅!), 𝑅!++ critical 
for high DP dimension

§ minimum ADC precision 𝐵,-.∗

increases with SNRmax

§ SNRmax saturates for 𝐵,-. >
𝐵,-.∗ → DAC mismatch and 𝐺
variations dominate

(𝑅'∗ = 𝑅',*+,)

(𝑅'∗ = 10𝑘Ω)

(𝑅'∗ = 𝑅',*+,)

dot product dimension ADC precision device resistive contrast

§ SNRmax improves with 
higher resistive contrast but..

§ increasing device resistive 
contrast beyond (~12-to-15) 
is futile

[𝐵-./ = 6] [𝑁 = 512] [𝐵-./ = 7,𝑁 = 512]

ADC 
dominated

mismatch & variation 
dominated
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System Level Accuracy Prediction Set-up 
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SNR maximizing Crossbar Designs 
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Exhaustive search
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Results – System Level Accuracy Prediction 
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§ Baseline ResNET-20 on CIFAR-10: 5b input, ternary weights, accuracy = 84.94% (3-layer network)
§ 3 Crossbars: 𝑁 = 144, 288, 576; 𝑅%/ = 𝑅%/∗ ; sweep 𝑅%0, 𝑅%1
§ SNR analysis predicted crossbar design achieves system-level accuracy to within 1% (exhaustive 

search) to within 2% of digital baseline value (84.94%)
§ bank-level SNR is a good proxy for network level accuracy → SNR analysis bypasses trial & error

MRAM ReRAM FeFET
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● proposed an analytical framework to obtain SNR-optimal resistive crossbar 
parameters → avoids expensive trial and error

● insights provided by the framework: 
● SNR-optimal sensing resistance 𝑅5∗ exists which equalizes the clipping and 

quantization noise in the column ADCs
● system level inference accuracy is maximized when bank-level compute 

SNR is maximized
● increasing device resistive contrast improves SNR up to a point (~12-15). 

Diminishing returns due to mismatch (input DACs) and variations (device 
conductance)

● proposed framework can be extended to other resistive IMC and devices

Conclusion
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Thank You 
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