IMPQ: Reduced Complexity Neural Networks via Granular Precision Assignment

Sujan Kumar Gonugondla*

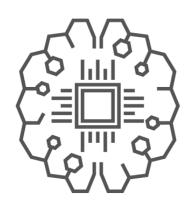
Naresh Shanbhag

Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign
Urbana, IL-61801

gonugon2@illinois.edu

*Now with Amazon Web Services

Machine Learning Under Resource Constraints



decision making under *resource constraints* limited energy supply, storage, real-time response

Machine learning at the edge opens up many interesting applications

Approach to improve inference efficiency

Novel hardware accelerators

- specialized neural-network accelerators, and drivers
- in-memory computing

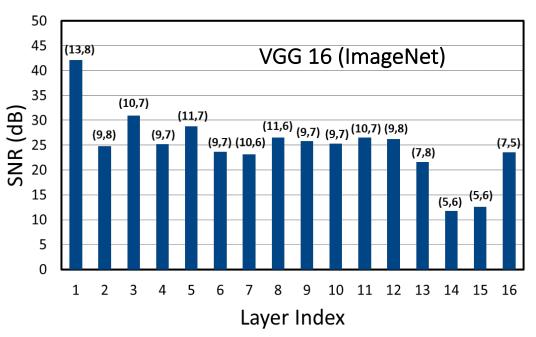
Novel algorithmic approaches

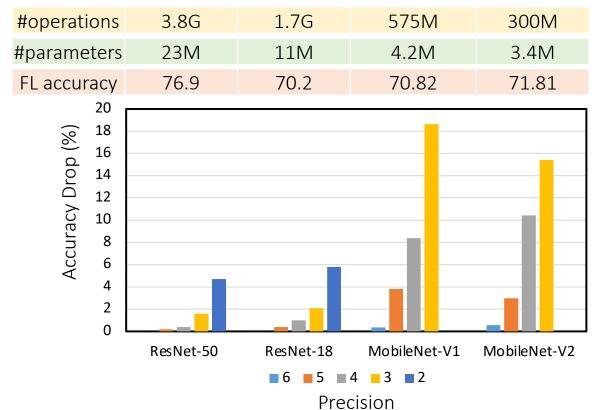
- Efficient neural network architectures
 - Ex: using depth-wise separable layers, low-rank approximations
- Knowledge distillation
- Pruning
- Low-precision quantization

Precision/SNR Requirements in Neural Nets

[Wang et al., CVPR-19] & [Choi et al., arxiv-18]

pretrained floating point network → < 1% loss in accuracy [Sakr et al., ICML-17]





- precision/SNR requirements → changes across layers, datasets and networks
- compact networks more sensitive to quantization

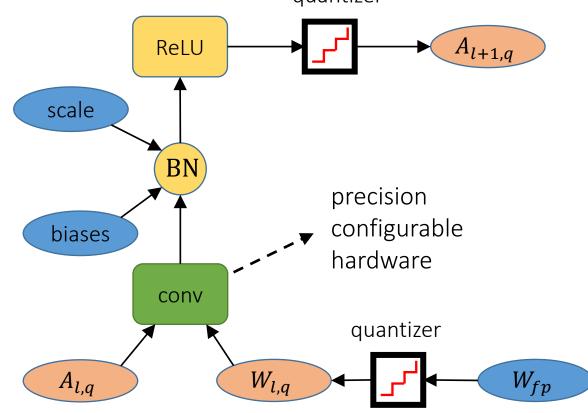
Can we reduce these requirements?

Motivation

quantizer

Key insights

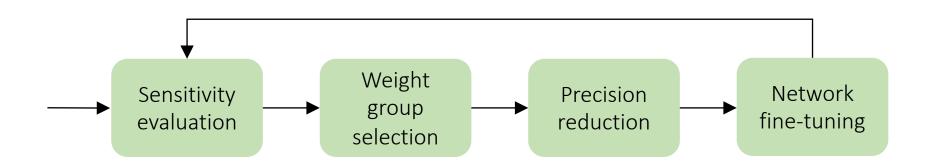
- specialized training techniques → aggressively low precision
- granular precision assignments → energy-accuracy trade-off opportunity



Challenge

• granular precision assignments → exponentially huge search space

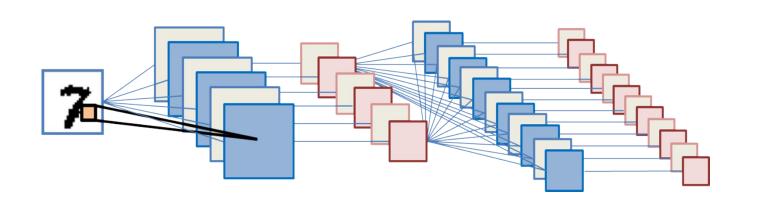
Proposed Scheme

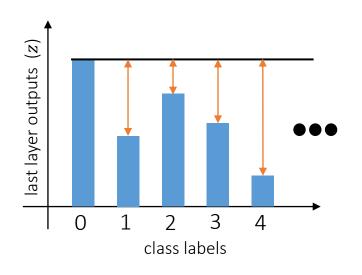


- starting with a pre-trained network ensures a good starting reference
- weight/activation groups that will have the same precision (layer-wise, kernel-wise)
- sensitivity-based precision allocation and retraining
 - protects important weights & compensates for accuracy loss

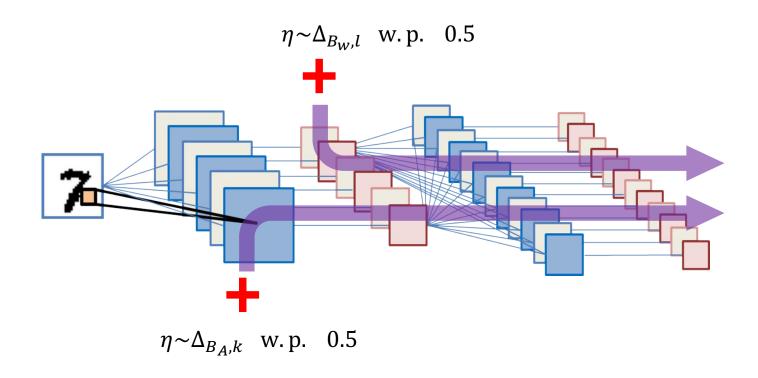
How do we obtain a sensitivity metric?

Sensitivity Metric



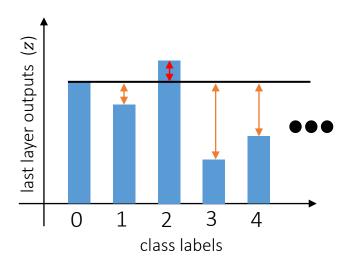


Sensitivity Metric



$$E_{W,l} = \mathbb{E}\left[\sum_{\substack{i=1\\l\neq\hat{y}_{t}}}^{M} \frac{\sum_{h\in\mathcal{W}_{l}} \left|\frac{\partial(Z_{i}-Z_{y_{c}})}{\partial h}\right|^{2}}{12\left|Z_{i}-Z_{y_{c}}\right|^{2}}\right] \qquad E_{A,k} = \mathbb{E}\left[\sum_{\substack{i\neq y_{c}}} \frac{\sum_{h\in\mathcal{A}_{k}} \left|\frac{\partial(z_{i}-Z_{y_{c}})}{\partial h}\right|^{2}}{12\left|Z_{i}-Z_{y_{c}}\right|^{2}}\right]$$

$$p_m \le \Sigma_l \Delta_{w,l}^2 E_{w,l} + \Sigma_k \Delta_{a,k}^2 E_{a,k}$$



$$\Delta_{B_w,l}=2^{-B_{w,l}}$$

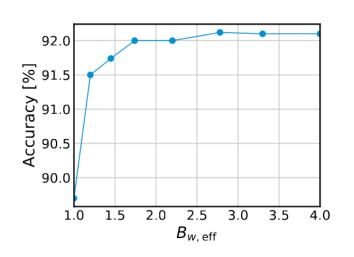
$$\Delta_{B_A,k}=2^{-B_{A,k}}$$

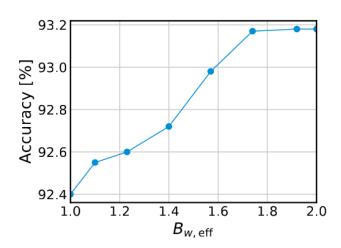
l/k : weight/activation group index

 $B_{w,l}$: weight precision of the \emph{l} -th group

 $B_{A,k}$: activation precision of the k-th group

Experiments on CIFAR-10



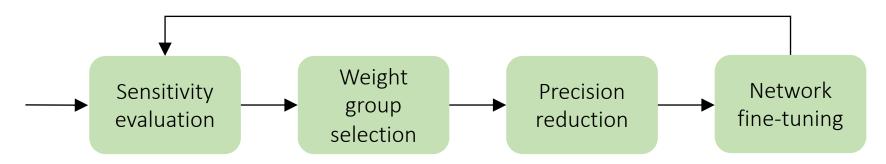


- VGG is less sensitive to quantization than ResNet
- IMPQ achieves high compression with minimal accuracy loss

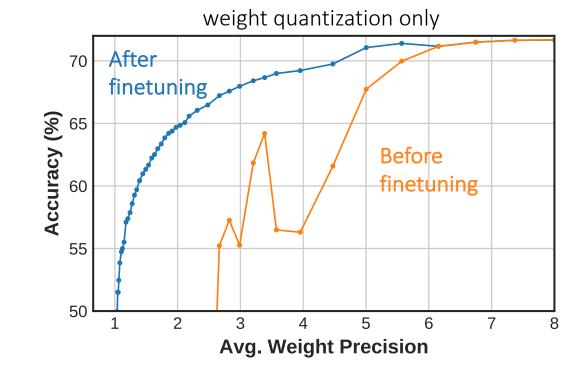
Dataset: CIFAR 10 Network: ResNet-20					
Method	$B_{w, m eff}$	FP [†] Acc.	Acc. [%]	Change	
BWN [26]	1	92.10	90.2	1.90	
TWN [😉]	Ternary	91.77	90.78	0.89	
TTQ [<mark>7</mark>]	Ternary	91.77	91.13	0.64	
ELQ [<mark>27</mark>]	Ternary	91.25	91.45	-0.20	
ELQ [<mark>27</mark>]	1	91.25	91.15	0.10	
DoReFa [9]	3	92.10	91.81	0.29	
DoReFa [9]	2	92.10	91.41	0.69	
LQ-Net* [25]	3	92.00	92.00	0	
LQ-Net* [25]	2	92.00	91.80	0.20	
IMPQ	1.74	92.10	92.00	0.10	

Dataset : CIFAR 10 Network : VGG-Small					
Method	$B_{w, m eff}$	FP [†] Acc.	Acc. [%]	Change	
BWN [26]	1	93.18	91.77	1.45	
TWN [😉]	Ternary	93.18	92.56	0.62	
LQ-Net* [25]	2	93.8	93.8	0	
IMPQ	1.55	93.1	92.97	0.13	

Experiments on ImageNet



- ImageNet on MobileNetV1
- 3 epochs of fine-tuning
- kernel-wise granularity
- number of weight groups picked reduced every 8 iterations



Insights: Impact of Kernel-Wise Granularity

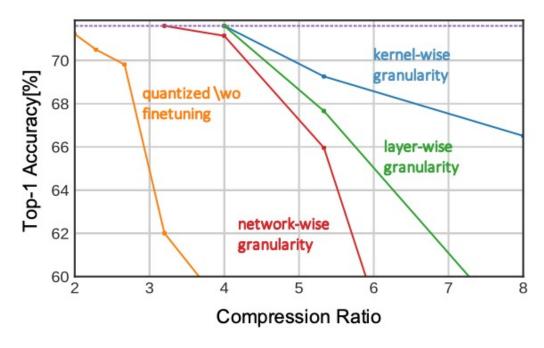
ImageNet on MobileNetV1

Compression Ratio:

$$CR = \frac{16\sum N_{w_l}}{\sum N_{w_l} B_{w,l}}$$

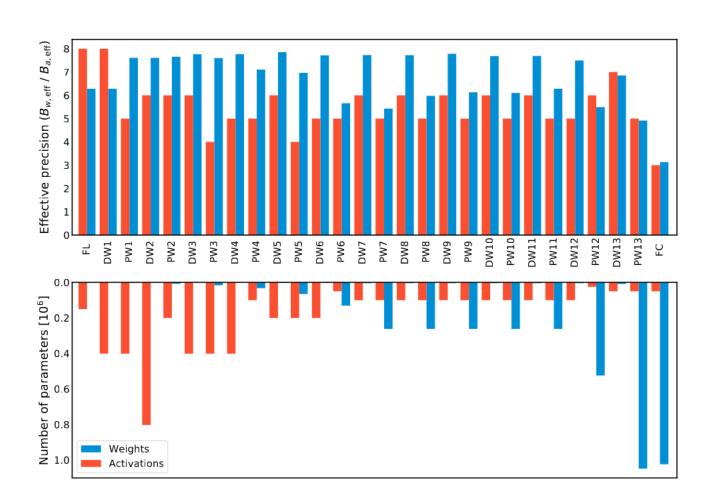
w.r.t networks quantized to 16b

(weight-only quantization)



- quantizing a pre-trained network does not lead to large compression
- compression improves with granular precision assignment

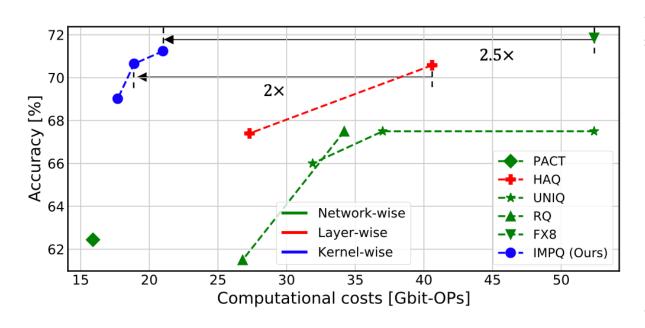
Insights: Sensitivity Across Layers



ImageNet on MobileNetV1

- precision requirements reduce with depth
- layers with more parameters are less sensitive to noise
- precision reduced in layers with most parameters

Comparison With Other Works



•	IMPQ reduces costs by $2\times-2.5\times$ on
	MobileNetV1

•	$1.7 \times$	better	com	pression
---	--------------	--------	-----	----------

3.611	D	D	TD 1 A F0/1	0 [CI ': OD]
Method	$B_{w, m eff}$	$B_{a, m eff}$	Top-1 Acc. [%]	\mathcal{C}_C [Gbit-OPs]
PACT [10, 17]	6	6	71.22	34.2
PACT [10 , 17]	5	5	67.00	26.8
PACT [10 , 17]	4	4	62.44	15.9
HAQ [<mark>17</mark>]	6	6	70.90	-
HAQ [🎞]	5	5	70.58	-
HAQ [🎞]	4	4	67.40	-
UNIQ [<mark>II8</mark>]	8	8	67.50	52.4
UNIQ [<mark>‡\$</mark>]	5	8	67.50	37.0
UNIQ [<mark>I</mark> 8]	4	8	66.00	31.9
RQ [19]	6	6	67.50	34.2
RQ [19]	5	5	61.50	26.8
DBQ* [<mark>§</mark>]	3	8	70.92	21.8
FP Baseline	32	32	71.84	-
FX8 Baseline	8	8	71.86	52.4
IMPQ	6	6	71.24	21.0
IMPQ	5	5	70.65	18.9
IMPQ	4	5.8	69.02	17.7
* nonlinear quantization				

^{*} nonlinear quantization

Conclusions

- Granular precision assignment leads to lower precision but is challenging to implement
- Proposed method uses sensitivity-based precision reduction
- 42% better compression compared to s.o.t.a on CIFAR-10
- 33% better compression on MobileNet-V1
- <1.5% drop in accuracy for $B_{a, eff} = B_{w, eff} = 5$ on MobileNet-V1

Thank You!

gonugon2@Illinois.edu shanbhag@Illinois.edu

Acknowledgement: This work was supported by the Defense Advanced Research Agency (DARPA) and the Semiconductor Research Corporation (SRC) via the Center for Brain-inspired Computing (C-BRIC) and the Al Hardware (AIHW) program.