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ABSTRACT
This paper obtains the fundamental limits on the computational
precision of in-memory computing architectures (IMCs). Various
compute SNR metrics for IMCs are defined and their interrelation-
ships analyzed to show that the accuracy of IMCs is fundamentally
limited by the compute SNR (SNRa) of its analog core, and that
activation, weight and output precision needs to be assigned ap-
propriately for the final output SNR SNRT → SNRa. The minimum
precision criterion (MPC) is proposed to minimize the output and
hence the column analog-to-digital converter (ADC) precision. The
charge summing (QS) compute model and its associated IMC QS-
Arch are studied to obtain analytical models for its compute SNR,
minimum ADC precision, energy and latency. Compute SNR mod-
els of QS-Arch are validated via Monte Carlo simulations in a 65 nm
CMOS process. Employing these models, upper bounds on SNRa
of a QS-Arch-based IMC employing a 512 row SRAM array are
obtained and it is shown that QS-Arch’s energy cost reduces by
3.3× for every 6 dB drop in SNRa, and that the maximum achievable
SNRa reduces with technology scaling while the energy cost at the
same SNRa increases. These models also indicate the existence of
an upper bound on the dot product dimension 𝑁 due to voltage
headroom clipping, and this bound can be doubled for every 3 dB
drop in SNRa.
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1 INTRODUCTION
In-memory computing (IMC) [13, 19, 28, 34] has emerged as an
attractive alternative to conventional von Neumann (digital) ar-
chitectures for addressing the energy and latency cost of memory
accesses in data-centric machine learning workloads. IMCs embed
analog mixed-signal computations in close proximity to the bit-cell
array (BCA) in order to execute machine learning computations
such as matrix-vector multiply (MVM) and dot products (DPs) as
an intrinsic part of the read cycle and thereby avoid the need to
access raw data.

IMCs exhibit a fundamental trade-off between its energy-delay
product (EDP) and the accuracy or signal-to-noise ratio (SNR) of its
analog computations. This trade-off arises due to constraints on
the maximum bit-line (BL) voltage discharge and due to process
variations, specifically spatial variations in the threshold voltage
𝑉t, which limit the dynamic range and the SNR. Additionally, IMCs
also exhibit noise due to the quantization of its input activation
and weight parameters and due to the column analog-to-digital
converters (ADCs). Henceforth, we use "compute SNR" to refer to
the computational precision/accuracy of an IMC, and "precision"
to the number of bits assigned to various signals.

Today, a large number of IMC prototype ICs have been demon-
strated [1, 3, 4, 7, 12, 15–17, 31–33, 36, 38, 40]. While these IMCs
have shown impressive reductions in the EDP over a von Neumann
equivalent with minimal loss in inference accuracy, it is not clear
that these gains are sustainable for larger problem sizes across data
sets and inference tasks. Unlike digital architectures whose com-
pute SNR can be made arbitrarily high by assigning sufficiently high
precision to various signals, IMCs need to contend with both quan-
tization noise as well as analog non-idealities. Therefore, IMCs will
have intrinsic limits on their compute SNR. Since the compute SNR
trades-off with energy and delay, it raises the following question:
What are the fundamental limits on the achievable computational
precision of IMCs?

Answering this question is made challenging due to the rich
design space occupied by IMCs encompassing a huge diversity of
available memory devices, bitcell circuit topologies, circuit and ar-
chitectural design methods. Today’s IMCs tend to employ ad-hoc
approaches to assign input and ADC precisions or tend to over-
provision its analog SNR in order to emulate the determinism of
digital computations. An analytical understanding of the relation-
ship between precision, compute SNR, energy, and delay in IMCs,
is presently missing.

This paper attempts to fill this gap by: 1) defining compute SNR
metrics for IMCs, 2) developing a systematic methodology to obtain
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a minimum precision assignment for activations, weights and out-
puts of fixed-point DPs realized on IMCs to meet network accuracy
requirements, and 3) employing this methodology to obtain the
limits on achievable compute SNR of a commonly employed IMC
topology, and quantify it energy vs. accuracy trade-off.

2 NOTATION AND PRELIMINARIES
2.1 General Notation
We employ the term signal-to-quantization noise ratio (SQNR)
when only quantization noise (denoted as 𝑞) is involved. The term
SNR is employed when analog noise sources are included and use
𝜂 to denote such sources. SNR is also employed when both quanti-
zation and analog noise sources are present.

2.2 The Additive Quantization Noise Model
Under the additive quantization noise model, a floating-point (FL)
signal 𝑥 quantized to 𝐵𝑥 bits is represented as 𝑥𝑞 = 𝑥 +𝑞𝑥 , where 𝑞𝑥
is the quantization noise assumed to be independent of the signal
𝑥 .

If 𝑥 ∈ [−𝑥m, 𝑥m] and 𝑞𝑥 ∼ 𝑈 [−0.5Δ𝑥 , 0.5Δ𝑥 ] where Δ𝑥 =

𝑥m2−(𝐵𝑥−1) is the quantization step size and 𝑈 [𝑎, 𝑏] denotes the
uniform distribution over the interval [𝑎, 𝑏], then the signal-to-
quantization noise ratio (SQNR𝑥 ) is given by:

SQNR𝑥 (dB) = 10 log10 (SQNR𝑥 ) = 6𝐵𝑥 + 4.78 − 𝜁𝑥 (dB) (1)

where SQNR𝑥 =
𝜎2
𝑥

𝜎2
𝑞𝑥

, 𝜎2𝑞𝑥 =
Δ2
𝑥

12 , and 𝜁𝑥 (dB) = 10 log10 (
𝑥2
m

𝜎2
𝑥
) is the

peak-to-average (power) ratio (PAR) of 𝑥 . Equation (1) quantifies
the familiar 6 dB SQNR gain per bit of precision.

2.3 The Dot-Product (DP) Computation
Consider the FL dot product (DP) computation defined as:

𝑦o = wTx =

𝑁∑
𝑗=1

𝑤 𝑗𝑥 𝑗 (2)

where 𝑦o is the DP of two 𝑁 -dimensional real-valued vectors w =

[𝑤1, . . . ,𝑤𝑁 ]T (weight vector) and x = [𝑥1, . . . , 𝑥𝑁 ]T (activation
vector) of precision 𝐵𝑤 and 𝐵𝑥 , respectively.

In DNNs, the dot product in (2) is computedwith𝑤 ∈ [−𝑤m,𝑤m]
(signed weights), input 𝑥 ∈ [0, 𝑥m] (unsigned activations) and
output 𝑦 ∈ [−𝑦m, 𝑦m] (signed outputs). Assuming the additive
quantization noise model from Section 2.2, the fixed-point (FX)
computation of the DP (2) is described by:

𝑦 = wT
𝑞x𝑞 + 𝑞𝑦 = (w + q𝑤)T (x + q𝑥 ) + 𝑞𝑦 (3)

≈ wTx +wTq𝑥 + qT𝑤x + 𝑞𝑦 = 𝑦o + 𝑞𝑖𝑦 + 𝑞𝑦 (4)

where w𝑞 = w + q𝑤 and x𝑞 = x + q𝑥 are the quantized weight and
activation vectors, respectively, 𝑞𝑖𝑦 is the total input (weight and
activation) quantization noise seen at the output 𝑦, and 𝑞𝑦 is the
additional output quantization noise due to round-off/truncation
in digital architectures or from the finite resolution of the column
ADCs in IMC architectures.

Assuming that the weights (signed) and inputs (unsigned) are
i.i.d. random variables (RVs), the variances of signals in (4) are given

bitcell array
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Figure 1: Systemnoisemodel of IMC: (a) a generic IMC block
diagram, and (b) dominant noise sources in fixed-point DP
computation on IMCs.

by:

𝜎2𝑦o = 𝑁𝜎2𝑤E[𝑥2];𝜎2𝑞𝑦 =
Δ2
𝑦

12 ;𝜎
2
𝑞𝑖𝑦

=
𝑁

12

(
Δ2
𝑤E[𝑥2] + Δ2

𝑥𝜎
2
𝑤

)
(5)

where 𝜎2𝑤 is the variance of the weights, Δ𝑤 = 𝑤m2−𝐵𝑤+1, Δ𝑥 =

𝑥m2−𝐵𝑥 and Δ𝑦 = 𝑦m2−𝐵𝑦+1 are the weight, activation, and output
quantization step-sizes, respectively.

3 COMPUTE SNR LIMITS OF IMCS
We propose the system noise model in Fig. 1 for obtaining precision
limits on IMC architectures. Such architectures (Fig. 1(a)) accept a
quantized input (x𝑞 ) and a quantized weight vector (w𝑞 ) to imple-
ment multiple FX DP computations of (4) in parallel in its analog
core. Hence, unlike digital architectures, IMC architectures suffer
from both quantization and analog noise sources such as SRAM
cell current variations, thermal noise, and charge injection, as well
as the limited headroom, which limits its compute SNR.

3.1 Compute SNR Metrics for IMCs
The following equations describe IMC noise model in Fig. 1:

𝑦 = 𝑦o + 𝑞𝑖𝑦 + 𝜂a + 𝑞𝑦 ; 𝜂a = 𝜂e + 𝜂h (6)

where 𝑦o is the ideal DP value defined in (2), 𝑞𝑖𝑦 is the input quanti-
zation noise reflected at the output 𝑞𝑖𝑦 , 𝜂a is the analog noise term
comprising both clipping noise 𝜂h due to limited headroom, and
𝜂e being all other noise sources, and 𝑞𝑦 is the quantization noise
introduced by the ADC.

We define the following fundamental compute SNR metrics:

SQNR𝑞𝑖𝑦 =
𝜎2𝑦o
𝜎2𝑞𝑖𝑦

; SNRa =
𝜎2𝑦o
𝜎2𝜂a

; SQNR𝑞𝑦 =
𝜎2𝑦o
𝜎2𝑞𝑦

(7)

where SNRa is the analog SNR, SQNR𝑞𝑖𝑦 is the propagated SQNR at
the output due to input (weight and activation) quantization noise
and is given by:

SQNR𝑞𝑖𝑦 (dB) = 6(𝐵𝑥 + 𝐵𝑤) + 4.8 − [𝜁𝑥 (dB) + 𝜁𝑤 (dB) ]

− 10 log10
(
22𝐵𝑥

𝜁𝑥
+ 22𝐵𝑤

𝜁𝑤

)
(8)

where 𝜁𝑥 (dB) = 10 log10
(

𝑥2
m

4E[𝑥2 ]

)
and 𝜁𝑤 (dB) = 10 log10

(
𝑤2
m

𝜎2
𝑤

)
are

the PARs of the (unsigned) activations and (signed) weights, re-
spectively, and SQNR𝑞𝑦 is the digitization SQNR solely due to ADC



Fundamental Limits on the Precision of In-memory Architectures ICCAD ’20, November 2–5, 2020, Virtual Event, USA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

5

10

15

20

25

30

35

40

45

50

Layer Index

S
N

R
T

(d
B

)

Figure 2: Per-layer SNRT(dB) requirements of DP computa-
tions in VGG-16 deployed on ImageNet.

quantization noise and is given by:
SQNR𝑞𝑦 (dB) = 6𝐵𝑦 + 4.8 − [𝜁𝑥 (dB) + 𝜁𝑤(dB)] − 10 log10 (𝑁 ) (9)

which is obtained by the substitutions: 𝐵𝑥 ← 𝐵𝑦 and 𝜁𝑥 (dB) ←
𝜁𝑦(dB) = 𝜁𝑥 (dB) + 𝜁𝑤(dB) + 10 log10 (𝑁 ) in (1).

From (6) and (7), it is straightforward to show:

SNRA =
𝜎2𝑦o

𝜎2𝑞𝑖𝑦 + 𝜎2𝜂a
=

[
1

SNRa
+ 1
SQNR𝑞𝑖𝑦

]−1
(10)

SNRT =
𝜎2𝑦o

𝜎2𝑞𝑖𝑦 + 𝜎2𝜂a + 𝜎2𝑞𝑦
=

[
1

SNRA
+ 1
SQNR𝑞𝑦

]−1
(11)

where SNRA is the pre-ADC SNR and SNRT is the total output SNR
including all noise sources. Note: (10)-(11) can be repurposed for
digital architectures by setting SNRa → ∞ since quantization is
the only noise source implying SNRA = SQNR𝑞𝑖𝑦 . Equations (8)-(9)
indicate that SQNR𝑞𝑖𝑦 and SQNR𝑞𝑦 can be made arbitrarily large
by assigning sufficiently high precision to the DP inputs (𝐵𝑥 and
𝐵𝑤 ) and the output (𝐵𝑦 ). Thus, from (10)-(11), SNRT in IMCs is
fundamentally limited by SNRa which depends on the analog noise
sources as one expects.

3.2 Precision Assignment Methodology for
IMCs

Priorwork [25, 26], indicates the requirement SNRT(dB) > SNR∗T(dB) =
10 dB-40 dB (see Fig. 2) for the inference accuracy of an FX network
to be within 1% of the corresponding FL network for popular DNNs
(AlexNet, VGG-9, VGG-16, ResNet-18) deployed on the ImageNet
and CIFAR-10 datasets. To meet this SNRT(dB) requirement, digital
architectures choose 𝐵𝑥 and 𝐵𝑤 such that SQNR𝑞𝑖𝑦 > SNR∗T, and
then choose 𝐵𝑦 sufficiently high to guarantee SQNR𝑞𝑦 ≫ SQNR𝑞𝑖𝑦
so that SNRT → SQNR𝑞𝑖𝑦 .

In contrast, for IMCs, we first need to ensure that SNRa > SNR∗T
so that SNRT can be made to approach SNRa with appropriate
precision assignment via the following methodology:

(1) Assign sufficiently high values for 𝐵𝑥 and 𝐵𝑤 per (8) such
that SQNR𝑞𝑖𝑦 ≫ SNRa so that SNRA → SNRa per (10).

(2) Assign sufficiently a high value for 𝐵𝑦 per (9) such that
SQNR𝑞𝑦 ≫ SNRA so that SNRT → SNRA per (11).

For example, if SQNR𝑞𝑖𝑦 (dB), SQNR𝑞𝑦 (dB) ≥ SNRa(dB) + 9 dB then
SNRa(dB) − SNRT(dB) ≤ 0.5 dB, i.e., SNRT(dB) lies within 0.5 dB of
SNRa(dB). In this manner, by appropriate choices for 𝐵𝑥 , 𝐵𝑤 , and
𝐵𝑦 , IMCs can be designed such that SNRT → SNRa, which is the
fundamental limit on SNRT.

From the above discussion it is clear that the input precisions 𝐵𝑥
and 𝐵𝑤 are dictated by network accuracy requirements, while the
output precision 𝐵𝑦 needs to be set sufficiently high to avoid becom-
ing a significant noise contributor. To ensure that a sufficiently high
value for 𝐵𝑦 , digital architectures employ the bit growth criterion
(BGC) described next.

3.3 Bit Growth Criterion (BGC)
The BGC is commonly employed to assign the output precision 𝐵𝑦
in digital architectures [9, 25]. BGC sets 𝐵𝑦 as:

𝐵BGC𝑦 = 𝐵𝑥 + 𝐵𝑤 + log2 (𝑁 ) (12)

Substituting 𝐵𝑦 = 𝐵BGC𝑦 from (12) into (9) and employing the rela-
tionship 𝜁𝑦(dB) = 10 log10 (𝑁 ) + 𝜁𝑥 (dB) + 𝜁𝑤(dB), the resulting SQNR
due to output quantization using the BGC is given by:

SQNRBGC
𝑞𝑦 (dB) = 10 log10

(
𝜎2𝑦o
𝜎2𝑞𝑦

)
= 6(𝐵𝑥 + 𝐵𝑤) + 4.8 − [𝜁𝑥 (dB) + 𝜁𝑤 (dB) ] + 10 log10 (𝑁 ) . (13)

Recall that SQNRBGC𝑞𝑦
≫ SNRA in order to ensure SNRT is close to

its upper bound. Comparing (9) and (13), we see that, for high values
of DP dimensionality 𝑁 , BGC is overly conservative since it assigns
large values to 𝐵𝑦 per (12). Some digital architectures truncate
the LSBs to control bit growth. The SQNR of such truncated BGC
(tBGC) can be obtained from (9) by setting the value of 𝐵𝑦 < 𝐵BGC𝑦 .

BGC’s high precision requirements is accommodated by digital
architectures by increasing the precision of arithmetic units at a
commensurate increase in the computational energy, latency, and
activation storage costs. However, IMCs cannot afford to use this
criterion since 𝐵𝑦 is the precision of the BL ADCs which impacts its
energy, latency, and area. Indeed, recent works [24] have claimed
that BL ADCs dominate the energy and latency costs of IMCs
assuming BGC to assign 𝐵𝑦 .

In the next section, we propose an alternative to BGC referred
to the minimum precision criterion (MPC), that can be employed
by both digital and IMC architectures which achieves a desired
SQNR𝑞𝑦 with much fewer bits than BGC.

3.4 The Minimum Precision Criterion (MPC)
WeproposeMPC to reduce𝐵𝑦 without incurring any loss in SQNR𝑞𝑦
compared to BGC. Unlike BGC, MPC accounts for the statistics of
𝑦o to permit controlled amounts of clipping to occur. In MPC (see
Fig. 3(a)), the output 𝑦o is clipped to lie in the range [−𝑦c, 𝑦c] in-
stead of [−𝑦m, 𝑦m] as in BGC (see Fig. 3(b)), where 𝑦c < 𝑦m (𝑦c:
clipping level), and the 𝐵𝑦 bits are employed to quantize this re-
duced range. The clipping probability 𝑝c = Pr{|𝑦𝑜 | > 𝑦c} is kept to
a small user-defined value, e.g., 𝑦c = 4𝜎𝑦o ensures that 𝑝c < 0.001
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Figure 3: Comparison of BGC and MPC: (a) MPC quantiza-
tion levels, (b) BGC quantization levels, and (c) distribution
𝑓𝑌 (𝑦o) of the ideal DP output 𝑦o vs. DP dimensionality 𝑁 .

if 𝑦o ∼ N(0, 𝜎2𝑦o ). The resulting SQNR𝑦 is given by:

SQNRMPC
𝑞𝑦 (dB) =6𝐵𝑦 + 4.8 − 𝜁

MPC
𝑦(dB) − 10 log10

(
1 + 𝑝c

𝜎2𝑐𝑐
𝜎2𝑞𝑦

)
(14)

where 𝜁MPC
𝑦 (dB) = 10 log10

𝑦2
c

𝜎2
𝑦o
, and 𝜎2𝑐𝑐 = E

[
(𝑦o − 𝑦c)2

��|𝑦o | > 𝑦c
]
is

the conditional clipping noise variance. Setting 𝑦c = 𝜁MPC
𝑦 𝜎𝑦𝑜 yields

𝜁MPC
𝑦(dB) = 10 log10 (𝜁MPC

𝑦 )2 indicating that 𝑝c is a decreasing function
of 𝜁MPC

𝑦 . Thus, (14) has the same form as (1) with an additional (last
term) clipping noise factor.

MPC exploits a key insight (see Fig. 3(c)), which follows from the
Central Limit Theorem (CLT) – in a 𝑁 -dimensional DP computation
(2), 𝜎𝑦o grows sub-linearly (as

√
𝑁 ) as compared to the maximum 𝑦m

which grows linearly with𝑁 . Furthermore, (14) shows a quantization
vs. clipping noise trade-off controlled by the clipping level 𝑦c. This
trade-off, illustrated in Fig. 3(c), is absent in BGC and tBGC, and is
critical to MPC’s ability to realize desired values of SQNR𝑞𝑦 with
smaller values of 𝐵𝑦 .

Assuming 𝑦o ∼ N(0, 𝜎2𝑦o ), and substituting 𝑦c = 4𝜎𝑦o , and
𝑝c = 0.001 into (14), we obtain the following lower bound:

𝐵MPC
𝑦 ≥ 1

6

[
SNRA(dB) + 7.2 − 𝛾 − 10 log10

(
1 − 10−

𝛾

10
)]

(15)

in order for SNRA(dB) − SNRT(dB) ≤ 𝛾 . For instance, the choice
𝛾 = 0.5 dB yields 𝐵MPC

𝑦 ≥ 1
6

[
SNRA(dB) + 16.3

]
which corresponds

to SQNRMPC
𝑦(dB) ≥ SNRA(dB) + 9 dB as discussed in Section 3.2.

(a)

(b)

Figure 4: Trends in SQNR𝑞𝑦 (dB) for DP computation with
𝐵𝑥 = 𝐵𝑤 = 7: (a) SQNR𝑞𝑦 (dB) vs. 𝑁 for MPC (𝜁𝑦 = 4), BGC,
tBGC, and (b) SQNRMPC

𝑞𝑦 (dB)
vs. 𝜁MPC

𝑦 when 𝐵𝑦 = 8.

3.5 Simulation Results
To illustrate the difference between MPC, BGC and tBGC, we as-
sume that SNRa(dB) ≥ 31 dB, so that SNRT(dB) ≥ 30 dB provided
SQNR𝑞𝑖𝑦 (dB), SQNR𝑞𝑦 (dB) ≥ 40 dB per (10)-(11). We further assume
DPs of varying dimension 𝑁 with 7-b quantized unsigned inputs
and signed weights randomly sampled from uniform distributions.
Substituting 𝐵𝑥 = 𝐵𝑤 = 7, 𝜁𝑥 (dB) = −1.3 dB, and 𝜁𝑤(dB) = 4.8 dB
into (8), we obtain SQNR𝑞𝑖𝑦 (dB) = 41 dB. Thus, all that remains is to
assign 𝐵𝑦 such that SQNR𝑞𝑦 (dB) ≥ 40 dB, for which there are three
choices - MPC, BGC and tBGC.

Figure 4(a) compares the SQNR𝑞𝑦 achieved by the three methods.
Per (15), MPC meets the SQNR𝑞𝑦 (dB) ≥ 40 dB requirement by set-
ting 𝐵𝑦 = 8 and 𝜁MPC

𝑦 = 4 independent of 𝑁 . In contrast, per (12),
BGC assigns 16 ≤ 𝐵𝑦 ≤ 20 as a function of 𝑁 to achieve the same
SNRT as MPC. Furthermore, tBGC meets the SQNR𝑞𝑦 requirement
with 11 ≤ 𝐵𝑦 ≤ 13 but fails to do so with 𝐵𝑦 = 8. Figure 4(b)
shows that SQNRMPC

𝑞𝑦 (dB)
is maximized when 𝜁MPC

𝑦 = 4, i.e., when
clipping level 𝑦c = 4𝜎𝑦o thereby illustrating MPC’s quantization vs.
clipping noise trade-off described by (14). Figure 4 also validates
the analytical expressions (8), (9), (13), and (14) (bold) by indicating
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Table 1: A Taxonomy of IMCs using In-memory Compute
Models

In-memory
Compute Model

Analog Core
Precision

ADC
Precision

QS IS QR 𝐵𝑥 𝐵𝑤 𝐵ADC

CM
O
S

Kang et al. [15] 8 8 8
Biswas et al. [1] 8 1 7
Zhang et al. [40] 5 1 1
Valavi et al. [33] 1 1 1
Khwa et al. [16] 1 1 1
Jiang et al. [12] 1 1 3.46
Si et al. [30] 2 5 5
Jia et al. [11] 1 1 8

Okumura et al. [23] 1 T 8
Kim et al. [17] 1 1 1
Guo et al. [8] 1 1 3
Yue et al. [38] 2 5 5
Su et al. [32] 2 1 5
Dong et al. [4] 4 4 4
Si et al. [31] 2 2 5

Be
yo

nd
CM

O
S Chen et al. [2] 1 T 3

Fick et al. [5] A A A
Xue et al.[35] 1 3 4
Yan et al.[37] 1 1 1
Zha et al.[39] 1 1 1
Xue et al.[36] 2 4 6

T: Ternary; A: Analog/Continuous-valued

a close match to ensemble-averaged values of SQNR𝑞𝑦 obtained
from Monte Carlo simulations (dotted).

Note: the theoretically optimal quantizer given an arbitrary sig-
nal distribution is obtained from the Lloyd-Max (LM) algorithm
[18]. Unfortunately, the LM quantization levels are non-uniformly
spaced which makes it hard to design efficient arithmetic units to
process such signals. MPC offers a practical alternative to LM.

4 ANALYTICAL MODELS FOR COMPUTE SNR
This section derives analytical expressions for SNRa of a typical
IMC. First, we show that most IMCs can be ’explained’ via a few
in-memory compute models.

4.1 In-memory Compute Models
All IMCs are viewed as employing one or more in-memory compute
models defined as a mapping of algorithmic variables 𝑦o, 𝑥 𝑗 and𝑤 𝑗

in (2) to physical quantities such as time, charge, current, or voltage,
in order to (usually partially) realize an analog BL computation of
the multi-bit DP in (2).

Furthermore, we suggest that most IMCs today employ one or
more of the following three in-memory compute models (see Fig. 5):
(a) charge summing (QS) [7, 14, 15, 40]; (b) current summing (IS)
[12, 16, 17, 30]; and (c) charge redistribution (QR) [1, 7, 15, 33], and
conjecture that these computemodels are in some sense universal in
that they represent an approximation to a ‘complete set’ of practical,
i.e., realizable, mappings of variables from the algorithmic to the
circuit domain as shown in Table 1.

Henceforth, we discuss the QS model and the corresponding QS-
based IMC referred to as QS-Arch in detail since it is very commonly
used. Analytical expressions for circuit domain equivalents of 𝜂e
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Figure 5: In-memory compute models: (a) charge summing
(QS), (b) current summing (IS), and (c) charge redistribution
(QR) models.

and𝜂h in (6) for the QSmodel are presented. These will be combined
with algorithm and precision-dependent noise sources 𝑞𝑖𝑦 and 𝑞𝑦
to obtain SNRT.

4.2 The Charge Summing (QS) Model
The QS model (see Fig. 5(a)) realizes the DP in (2) via the variable
mapping (𝑦o → 𝑉o,𝑤 𝑗 → 𝐼 𝑗 , 𝑥 𝑗 → 𝑇𝑗 ) where the cell current 𝐼 𝑗 is
integrated over the WL pulse duration 𝑇𝑗 ( 𝑗 = 1, . . . , 𝑁 ) on a BL (or
cell) capacitor 𝐶 resulting an output voltage as shown below:

(𝑦o → 𝑉o) =
1
𝐶

𝑁∑
𝑗=1
(𝑤 𝑗 → 𝐼 𝑗 ) (𝑥 𝑗 → 𝑇𝑗 ) (16)

where 𝑉o is the DP output assuming infinite voltage head-room,
i.e., no clipping. The cell current 𝐼 𝑗 depends upon transistor sizes
and the WL voltage 𝑉WL, and typical values are: 𝐶 (a few hundred
fFs), 𝐼 𝑗 (tens of 𝜇As), and 𝑇𝑗 (hundreds of ps).

Noise Models: The noise contributions in QS arise from the fol-
lowing sources: (1) variations in the pulse-widths 𝑇𝑗 of current
switch pulses 𝜙 𝑗 (Fig. 5(a)); (2) their finite rise and fall times (see
Fig. 6(b)); (3) spatial variations in the currents 𝐼 𝑗 ; (4) thermal noise
in the discharge RC-network; and (5) clipping due to limited volt-
age head-room. Thus, the analog DP output 𝑉a corresponding to
𝑦a = 𝑦o + 𝜂a is given by:

(𝑦𝑎 → 𝑉a) = (𝑦o → 𝑉o) + (𝜂e → 𝑣e) + (𝜂h → 𝑣c),

𝑣e = 𝑣𝜃 +
1
𝐶

𝑁∑
𝑗=1

𝑖 𝑗𝑇𝑗 + 𝐼 𝑗 (𝑡 𝑗 − 𝑡rf),

𝑣c = min
(
𝑉o, 𝑉o,max

)
−𝑉o, (17)



ICCAD ’20, November 2–5, 2020, Virtual Event, USA Sujan K. Gonugondla, Charbel Sakr, Hassan Dbouk, and Naresh R. Shanbhag

𝐼"

𝑉$%

𝐶

𝑉'' − 𝑉)

(a)

𝑇!
𝑇"

time

𝑉#$
𝑇%

(b)

Figure 6: Modeling the discharge process in the QS compute
model: (a) cell current 𝐼 𝑗 , and (b) the word-line voltage pulse
𝑉WL.

Table 2: QS Model Parameters in a 65 nm CMOS Process

Parameter Value Parameter Value
𝑘 ′ (𝜇A/V2) 220 𝛼 1.8
𝜎𝑇 0 (ps) 2.3 𝜎𝑉t (mV) 23.8

Δ𝑉BL,max (V) 0.8-to-0.9 𝑉WL (V) 0.4-to-0.8
𝑉t (V) 0.4 𝑇0 (ps) 100
𝑇 (K) 270 𝑘 (JK−1) 1.38e-23

where 𝑉o,max is the maximum allowable output voltage, and 𝑣e and
𝑣c are the voltage domain noise due to circuit non-idealities and
clipping, respectively, 𝑖 𝑗 ∼ N(0, 𝜎2𝐼 𝑗 ) is the noise due to (spatial)
current mismatch, and 𝑡 𝑗 ∼ N(0, 𝜎2𝑇𝑗

) is the noise due to (temporal)
pulse-width mismatch, respectively, both of which are modeled
as zero mean Gaussian random variables, 𝑡rf models the impact
of finite rise and fall times of the current switching pulses, and
𝑣𝜃 ∼ N(0, 𝜎𝜃 ) is the thermal noise. Note: 𝑉o,max can be as high as
0.9 V when 𝑉dd = 1V.

Analytical expressions to estimate the noise standard deviations
𝜎𝐼 𝑗 , 𝜎𝑇𝑗

, 𝜎𝜃 , and 𝑡rf, (see appendix) are provided below:

𝜎𝐼 𝑗 = 𝐼 𝑗

(
𝛼𝜎𝑉t

𝑉WL −𝑉t

)
= 𝐼 𝑗𝜎D (18)

𝑡rf = 𝑇𝑟 −
(𝑉WL −𝑉t

𝑉WL

)𝑇r +𝑇f
𝛼 + 1 (19)

𝜎𝑇𝑗
=

√
ℎ 𝑗𝜎𝑇 0, 𝜎𝜃 =

√
𝑘𝑇

𝐶
(20)

where 𝜎2D is normalized current mismatch variance, 𝑇𝑗 = ℎ 𝑗𝑇0 is
the delay of a ℎ 𝑗 -stage WL driver composed unit elements with
delay 𝑇0 each, 𝜎𝑇 0 is the standard deviation of 𝑇0, 𝑇r and 𝑇f are WL
pulse rise and fall times (see Fig. 6(b)), 𝛼 is a fitting parameter in the
𝛼-law transistor equation, 𝜎𝑉t is standard deviation of𝑉t variations,
𝑘 is the Boltzmann constant, and 𝑇 is the absolute temperature.

Note that typically the WL voltage 𝑉WL is identical for all rows
in the memory array with a few exceptions such as [40] which
modulate 𝑉WL to tune the cell current 𝐼 𝑗 . The effects of rise/fall
times and delay variations can be mitigated by carefully designing
the WL pulse generators. Therefore, noise in QS is dominated by
spatial threshold voltage variations. Indeed, using the typical values
fromTable 2, we find that𝜎𝐼 𝑗 /𝐼 𝑗 ranges from 8% to 25%, while𝜎𝑇𝑗

/𝑇𝑗
ranges from 0.5% to 3%.
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Figure 7: The charge summing IMC (QS-Arch).

Energy and Delay Models: The average energy consumption in
the QS model is given by:

𝐸QS = E [𝑉a]𝑉dd𝐶 + 𝐸su (21)

where the spatio-temporal expectation E [𝑉a] is taken over inputs
(temporal) and over columns (spatial) 𝐸su is the energy cost of
toggling switches 𝜙 𝑗 s. Equation (21) shows that the energy con-
sumption in the QS model increases with𝐶 ∝ array size, the supply
voltage 𝑉dd, and the mean value of the DP E [𝑉a].

The delay of the QSmodel is given by𝑇QS = 𝑇max+𝑇su,where𝑇su
is the time required to precharge the capacitors and setup currents,
and 𝑇max = max{𝑇𝑗 } is the longest allowable pulse-width.

Table 2 tabulates parameters of the QS model in a representative
65 nm CMOS process.

4.3 QS-Arch
The charge summing architecture (QS-Arch) in Fig. 7(b) employs a
6T [8] or 8T [30] SRAM bitcell within the QS model (see Section 4.2).
This architecture implements fully-binarized DPs on the BLs by
mapping the input bit 𝑥𝑖, 𝑗 to the WL access pulse 𝑉WL, 𝑗 while the
weights 𝑤̂𝑖, 𝑗 are stored across 𝐵𝑤 columns of the BCA so that the BC
currents 𝐼𝑖, 𝑗 ∝ 𝑤̂𝑖, 𝑗 . The output 𝑉o = Δ𝑉BL is the voltage discharge
on the BL and the capacitance𝐶 = 𝐶BL is the BL capacitance in (16).
QS-Arch sequentially (bit-serially) processes one multi-bit input
vector x in 𝐵𝑥 in-memory compute cycles followed by a digital
summing of the binarized DPs to obtain the final multi-bit DP (2).
Table 3 summarizes the noise and energy models for QS-Arch.

We derive the analytical expressions of architecture-level noise
models for QS-Arch using those of the QS model described in Sec-
tion 4.2. In QS-Arch, clipping occurs in each of the 𝐵𝑥×𝐵𝑤 binarized
DPs and contributes to the overall clipping noise variance 𝜎2𝜂h at
the multi-bit DP output. Circuit noise from each binarized DP is
aggregated to obtain the final circuit noise variance 𝜎2𝑒 . In addi-
tion, employing MPC imposed requirement on the final DP output
precision 𝐵𝑦 (15), we obtain the lower bound on ADC precision
𝐵ADC.

Since the multi-bit DP computation in (2) is high-dimensional
(𝑁 can be in hundreds), it is clear that the limited BL dynamic
range e.g., 𝑉o,max in (17), will begin to dominate SNRa in (7). It is
for this reason that most, if not all, IMCs resort to some form of
binarization of the multi-bit DP in (2) prior to employing one of the
in-memory compute models (see Table 1). Ultimately, SNRa limits
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Table 3: Model Parameters for QS-Arch

Bitcell type 6T or 8T Analog Core Precision 𝐵𝑥 = 1, 𝐵𝑤 = 1

Energy cost per DP 𝐸QS-Arch = 𝐵𝑤𝐵𝑥 (𝐸QS + 𝐸ADC) + 𝐸misc
Compute model

mapping

𝐶 → 𝐶BL
𝑉o → Δ𝑉BL
𝑇𝑗 → 𝑇WL, 𝑗

𝜎2𝑞𝑖𝑦
1
12𝑁Δ2

𝑥𝜎
2
𝑤 + 1

12𝑁Δ2
𝑤E

[
𝑥2

]
𝜎2𝜂h

4
9

(
1 − 4−𝐵𝑤

) (
1 − 4−𝐵𝑥

)
∑𝑁
𝑘=𝑘h
(𝑘 − 𝑘h)2

(𝑁
𝑘

) (
1
4

)𝑘 (
3
4

)𝑁−𝑘
𝜎2𝜂e

𝑁𝜎2
D (1−4−𝐵𝑤 ) (1−4−𝐵𝑥 )

9 𝐵ADC ≥ min
( SNRA(dB)+16.2

6 , log2 (𝑘h), log2 (𝑁 )
)

𝑘h =
Δ𝑉BL.max
Δ𝑉BL,unit

; 𝜎D =
𝜎𝐼
𝐼
is the normalized standard deviation of the bit-cell current (18); (𝑥)+ = max(𝑥, 0).
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the number and accuracy of BL computations per read cycle and
hence the overall energy efficiency of IMCs.

5 SIMULATION RESULTS
This section describes the noise model validation methodology for
validating the noise expressions in Table 3 and simulation results
for QS-Arch.

5.1 Noise Model Validation Methodology
Figure 8, we obtain the QS model parameters (Section 4) using
Monte Carlo circuit simulations in a representative 65 nm CMOS
process, with experimental validation of some of these, e.g., 𝜎𝜂e ,
from our IMC prototype ICs [6, 15] when possible.

Incorporating non-linear circuit behavior along with noise mod-
els, sample-accurate Monte Carlo Python simulations are employed
to numerically calculate SNR values using ensemble averaged (over
1000 instances) statistics. We compare the SNR values obtained
through sample-accurate simulations with those obtained by evalu-
ating the analytical expressions in Table 3.

The quantitative results in subsequent sections employ the QS
model parameter values in Table 2 along with QS-Arch energy
and noise models from Table 3. An SRAM BCA with 512 rows and
𝐶BL = 270 fF is assumed throughout. Energy and accuracy of QS-
Arch is traded-off by tuning 𝑉WL. We assume zero mean signed
weights𝑤 𝑗 and unsigned inputs 𝑥 𝑗 drawn independently from two
different distributions. We set 𝐵𝑥 = 𝐵𝑤 = 6 everywhere, unless
otherwise stated, so that SQNR𝑞𝑖𝑦 (dB) = 38.9 dB ≫ SNRa(dB) and
therefore SNRA ≈ SNRa from (10). Next, we show how SNRA and
SNRT trade-off with 𝑁 and 𝐵ADC.

5.2 SNR Trade-offs in QS-Arch
Figure 9(a) shows that the maximum achievable SNRA increases
with 𝑉WL. Further, for a fixed 𝑉WL, QS-Arch also exhibits a sharp

drop in SNRA at high values of 𝑁 > 𝑁max, e.g., SNRA ≈ 19.6 dB for
𝑁 ≤ 125 and then drops with increase in 𝑁 . A key reason for this
trade-off is that 𝜎2𝜂h decreases while 𝜎

2
𝜂e increases as𝑉WL is reduced

(see Table 3), and since 𝜎2𝜂h limits 𝑁 and 𝜎2𝜂e limits SNRa. Thus, by
controlling 𝑉WL, we can trade-off 𝑁max with SNRA. Specifically,
𝑁max increases by 2× for every 3 dB drop in SNRA.

In QS-Arch, the minimum value of 𝐵ADC (see Table 3) depends
upon the minimum of: 1) the MPC term (15); 2) the headroom
clipping term; and 3) the small 𝑁 case where BL discharge Δ𝑉BL has
a finite number of discrete levels. Figure 9(b) shows that SNRT →
SNRA of Fig. 9(a) when 𝐵ADC is greater than the lower bound
(circled) in Table 3 for different values of 𝑉WL and 𝑁 .

5.3 Impact of ADC Precision
Minimizing the column ADC energy is critical to maintain IMC’s
energy efficiency since each DP in QS-Arch requires 𝐵𝑥×𝐵𝑤 conver-
sions. Furthermore, ADCs need to operate in a noise-limited regime
due to the high PAR of high-dimensional DP outputs combined
with severe area constraints imposed by column-pitch matching
requirements.

ADC energy costs when operating in the noise-limited regime
is modeled as [20, 21]:

𝐸ADC = 𝛽4𝐵ADC (22)

where 𝛽 is estimated from the Schreier figure of merit [21, 27] which
is approximately 180 dB based on recent (2019) ADCs [22] leading
to 𝛽 = 7.5 × 10−4 fJ at 𝑉dd = 1V.

Figure 10 shows that ADC energy increases with DP dimension
𝑁 . However, the gap between ADC energy consumption with BGC
andMPC begins to increase for𝑁 > 60. This is because BGC assigns
higher values of 𝐵ADC as compared to MPC (see Table 3) to achieve
the same SNRT.

5.4 Impact of Technology Scaling
One expects IMCs to exhibit improved energy efficiency and through-
put in advanced process nodes due to lower capacitance and lower
supply voltage. However, the impact of technology scaling on the
analog noise sources also needs to be considered. To study this
trade-off, we employ the SNR and energy models from Section 5
(see Table 3) with parameters scaled as per the ITRS roadmap [10].
FDSOI technology is assumed for the 22 nm, 11 nm and 7 nm nodes.
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cording to BGC (12), tBGC, and the MPC criterion (Table 3)
such that SNRT(dB) is within 0.5 dB of SNRA(dB).

For a specific node, Fig. 11 shows that the QS-Arch’s energy
cost reduces by 3.3× for every 6 dB drop in SNRA, but it suffers a
catastrophic drop in SNRA before reaching the input quantization
noise limit set by (8). This drop occurs due to an increase in the
clipping noise variance 𝜎2𝜂h .

Across technology nodes, the maximum achievable SNRA in
QS-Arch reduces as technology scales from 65 nm down to 7 nm
due to: 1) increased clipping probability caused by lower supply

SQNR!!" limit

Figure 11: Impact of CMOS technology scaling on the com-
pute SNR vs. energy trade-off in QS-Archwith 𝐵𝑥 = 3, 𝐵𝑤 = 5,
and 𝑁 = 300.

voltages, and 2) increased variations in BL discharge voltage Δ𝑉BL
due to smaller 𝑉dd/𝑉t ratio. As a result, Fig. 11 also shows that the
energy consumption, at the same SNRA, is in fact higher in 11 nm
and 7 nm nodes as compared to the 22 nm node due to the need
to employ a higher values of 𝑉WL to control variations in Δ𝑉BL
implying the technology scaling may not be very friendly to IMCs
based on QS-Arch.

6 CONCLUSIONS AND SUMMARY
Based on the results presented in the earlier sections, we provide
the following IMC design guidelines:

• For IMCs to be useful in realizing DNNs, the compute SNR of
their analog core (SNRa) needs to be the range 10 dB − 40 dB or
greater depending on the layer.
• The total SNR (SNRT) of DP computations implemented on IMCs
is limited by SNRa. Weight, activation, and column ADC preci-
sions need to assigned in accordance with the minimum precision
criterion (MPC) in order to minimize the energy and latency over-
heads, especially of column ADCs.
• For the commonly used IMC QS-Arch, given an array size, there
exists a trade-off between the maximum achievable SNRa and the
maximum realizable DP dimension 𝑁 . Multi-bank IMCs will be
required for high-dimensional DPs in order to boost the overall
compute SNR.
• Technology scaling will have an adverse impact on QS-Arch’s
maximum achievable SNRa and the energy cost incurred for a
fixed SNRa.

An overarching conclusion of this paper is that the drive towards
minimizing energy and latency using IMCs, runs counter tomeeting
the compute SNR requirements imposed by applications. This paper
quantifies this trade-off through analytical expressions for compute
SNR and energy-delay models. It is hoped that IMC designers will
employ these models as they seek to optimize the design of IMCs
of the future, including the use of algorithmic methods for SNR
boosting such as statistical error compensation (SEC) [29].
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