Low-complexity Fixed-point Convolutional Neural Networks for Automatic Target Recognition

Hassan Dbouk*, Hanfei Geng*, Craig M. Vineyard**, and Naresh R. Shanbhag*

*Dept. of Electrical and Computer Engineering, University of Illinois at Urbana Champaign

**Sandia National Laboratories

Automatic Target Recognition (ATR)

- ATR has been an active area of research for decades
 - synthetic aperture radar (SAR) imagery guarantees robust operation
- Deployed on resource-constrained airborne vehicles
 - real-time and always-on detection of targets is required
- Accuracy of ATR systems cannot be compromised
 - deep learning-based solutions have gained momentum

synthetic length of SAR

SAR image

Prior Art: Deep Networks for ATR

Network	Number of	Number of	Best Reported
Architecture	Parameters	MACs	Accuracy [%]
Morgan [1]	88K	25M	92.3
Wagner [2]	410 K	10 M	99.5
Gao [3]	115 K	6 M	97.8
Ding [4]	231M	2 B	93.2
Chen [5]	303K	42 M	99.1

- Existing works focus on achieving the best classification accuracy
 - ignore the cost of implementing these networks
- The models require floating-point arithmetic for implementation
 - prohibitive on resource-constrained devices

Contributions

- We present the design of low-complexity networks for ATR with minimal loss in classification accuracy via:
 - compact network architecture design
 - training networks with reduced precision activations and weights
- Our proposed networks achieve a total 984 × reduction in representational cost and 71 × reduction in computational cost compared to the best CNN in the SAR ATR literature
 - while achieving > 99% classification accuracy on the MSTAR dataset

Compact Network Architecture

- Parameterizable by f
 - controls the width of the network (complexity)
- 1st layer typically dominates complexity
 - standard 3D convolution will contribute to 99% of network complexity
- BatchNorm (BN) layers allow for training smaller models for the same accuracy
 - learning is easier when input statistics are normalized

Layer Type	Layer Shape	Input Shape
Conv	$9 \times 9 \times 1 \times 5$	$64 \times 64 \times 1$
BN	5	$56 \times 56 \times 5$
ReLU	—	$56 \times 56 \times 5$
PW-Conv	$1 \times 1 \times 5 \times f$	$56 \times 56 \times 5$
BN	f	$56 \times 56 \times f$
ReLU	_	$56 \times 56 \times f$
MaxPool	8×8	$56 \times 56 \times f$
Conv	$2 \times 2 \times f \times 2f$	$7 \times 7 \times f$
BN	2f	$6 \times 6 \times 2f$
ReLU	_	$6 \times 6 \times 2f$
MaxPool	2×2	$6 \times 6 \times 2f$
Conv	$2 \times 2 \times 2f \times 4f$	$3 \times 3 \times 2f$
BN	4f	$2 \times 2 \times 4f$
ReLU	_	$2 \times 2 \times 4f$
Conv	$2 \times 2 \times 4f \times 10$	$2 \times 2 \times 4f$
BN	10	$1 \times 1 \times 10$
ReLU	_	$1 \times 1 \times 10$
FC	10×10	$1 \times 1 \times 10$
Softmax	—	$1 \times 1 \times 10$

Compact Network Architecture – 1st Layer

- Factorize the 1st layer into two layers:
 - small convolution layer (5 kernels instead of *f*)
 - pointwise convolution layer

complexity reduction of 2.6 \times - 4.6 \times

Layer Type	Layer Shape	Input Shape
Conv	$9 \times 9 \times 1 \times 5$	$64 \times 64 \times 1$
BN	5	$56 \times 56 \times 5$
ReLU		$56 \times 56 \times 5$
PW-Conv	$1 \times 1 \times 5 \times f$	$56 \times 56 \times 5$
BN	f	$56 \times 56 \times f$
ReLU	_	$56 \times 56 \times f$
MaxPool	8×8	$56 \times 56 \times f$
Conv	$2 \times 2 \times f \times 2f$	$7 \times 7 \times f$
BN	2f	$6 \times 6 \times 2f$
ReLU	—	$6 \times 6 \times 2f$
MaxPool	2×2	$6 \times 6 \times 2f$
Conv	$2 \times 2 \times 2f \times 4f$	$3 \times 3 \times 2f$
BN	4f	$2 \times 2 \times 4f$
ReLU	—	$2 \times 2 \times 4f$
Conv	$2 \times 2 \times 4f \times 10$	$2 \times 2 \times 4f$
BN	10	$1 \times 1 \times 10$
ReLU	_	$1 \times 1 \times 10$
FC	10×10	$1 \times 1 \times 10$
Softmax	—	$1 \times 1 \times 10$

Training Fixed-Point Networks

- Quantize both weights and activations in the forward path
 - keep full-precision copies of the weights for weight updates
- Two key challenges:
 - determining a suitable clipping value for quantization
 - back-propagating the gradients through non-differentiable quantization function

Training Fixed-Point Networks – Clipping

• Weights clipping:

$$c_{W,l} = \max(|W_l|)$$

• Activations clipping:

$$c_{A,l} = \max_{i \in [C_l]} \left(\beta_l^{(i)} + 3\gamma_l^{(i)} \right) \qquad \begin{array}{l} \text{guarantees} \\ \Pr\{x_l \le c_{A,l}\} \ge 0.99865 \end{array}$$

- Where for every layer $l \in \{1, 2, ..., L\}$:
 - |. | is the element-wise absolute value operator
 - C_l is the number of channels in the input activation tensor
 - $(\beta_l^{(i)}, \gamma_l^{(i)})$ are the learnable per-channel shift and scale BN parameters

Training Fixed-Point Networks – STE

• Use the straight-through estimator (STE) for calculating the gradients of the quantization function:

[Bengio - arXiv'13]

$$\frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial x_q} \times \frac{\partial x_q}{\partial x} \approx \frac{\partial \mathcal{L}}{\partial x_q} \times \mathbb{I}\{c_1 \le x \le c_2\}$$

$$x_q = Q(x)$$
 is the quantized signal

- c_1, c_2 are the quantizer clipping values
- ${\mathcal L}$ is the loss function

Training Fixed-Point Networks – Methodology

perform SGD weight update

Complexity Metrics – Computational Cost

• Captures the number of 1-b full adders (FA) needed to implement the multiplications required for a single inference

$$\mathcal{C}_C = \sum_{l=1}^L N_l D_l B_{W,l} B_{A,l}$$

- Where for every layer $l \in \{1, 2, ..., L\}$ we have:
 - N_l is the number of dot products
 - D_l is the dot product dimensionality
 - $B_{W,l}$ and $B_{A,l}$ are the weights and activations bit precisions respectively

Complexity Metrics – Representational Cost

• Measures the number of bits needed to represent the entire network for a single inference:

$$C_{R} = \sum_{l=1}^{L} (|W_{l}|B_{W,l} + |A_{l}|B_{A,l})$$

- Where for every layer $l \in \{1, 2, ..., L\}$ we have:
 - $|W_l|$ and $|A_l|$ are the number of elements in the weights and activations tensors respectively
 - $B_{W,l}$ and $B_{A,l}$ are the weights and activations bit precisions respectively

Experimental Setup – MSTAR Dataset

Vehicle	Training Images	Testing Images
Туре	(17 degrees)	(15 degrees)
2 S 1	299	274
BMP2	698	587
BRDM2	298	274
BTR60	256	195
BTR70	233	196
D7	299	274
T62	299	273
T72	691	582
ZIL131	299	274
ZSU234	299	274

- Benchmark our networks using the publicly available MSTAR dataset
 - standard dataset for SAR-based ATR systems

Floating-Point Results – Accuracy

- Comparing the classification accuracy of our proposed networks with existing network topologies
 - proposed low-complexity networks remain competitive with > 99% accuracy
- FL-x denotes our proposed floatingpoint network with f = x
 - increasing *f* improves performance

for a fair comparison, all the models were trained using the **same hyperparameter setup**

Network	Input Crop	Test		
Architecture	Size	Accuracy [%]		
Prior Art				
Morgan [1]	128×128	99.72		
Wagner [2]	64×64	99.56		
Gao [3]	64×64	99.31		
Ding [4]	128×128	99.34		
Chen [5]	88×88	99.66		
Proposed Networks				
FL-16	64×64	99.38		
FL-20	64×64	99.47		
FL-24	64×64	99.41		
FL-28	64×64	99.56		
FL-32	64×64	99.66		

Floating-Point Results – Complexity

- At iso-accuracy, our proposed networks achieve massive reductions in complexity
 - increasing *f* increases the complexity
- FL-16 achieves $24 \times reduction$ in C_R and $3.4 \times reduction$ in C_C

Fixed-Point Results – Impact of Bit Precision

- Fix the weight and activation precision $B_{W,l} = B_{A,l} = B \ \forall l \in [L]$
 - simplifies the search space

- Using 4bits is sufficient to achieve > 99% accuracy
 - massive reductions compared to 32b floating-point

Fixed-Point Results – Comparison

- At iso-accuracy, our proposed fixed-point (FX) networks achieve massive reductions in complexity
- FX5-16 achieves $41 \times reduction$ in C_R and $21 \times reduction$ in C_C

All models achieving > 99% accuracy

Conclusion & Future Work

- We have presented a set of compact CNN architectures for ATR coupled with a fixed-point training methodology
- The proposed networks achieve a total $984 \times reduction$ in C_R and $71 \times reduction$ in C_C compared to SOTA CNNs for ATR, at iso-accuracy (> 99%) on the MSTAR dataset
- Future work: mapping the proposed networks onto efficient hardware architectures to further facilitate their deployment

Thank you!

Acknowledgement:

This work is supported by a grant from Sandia National Laboratories and DARPA FRANC Program.