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Automatic Target Recognition (ATR)

• ATR has been an active area of research for decades
• synthetic aperture radar (SAR) imagery guarantees 

robust operation

• Deployed on resource-constrained airborne vehicles
• real-time and always-on detection of targets is required

• Accuracy of ATR systems cannot be compromised
• deep learning-based solutions have gained momentum
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Prior Art: Deep Networks for ATR

• Existing works focus on achieving the best classification accuracy
• ignore the cost of implementing these networks

• The models require floating-point arithmetic for implementation
• prohibitive on resource-constrained devices
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Contributions

• We present the design of low-complexity networks for ATR with 
minimal loss in classification accuracy via:
• compact network architecture design

• training networks with reduced precision activations and weights

• Our proposed networks achieve a total 𝟗𝟖𝟒 × reduction in 
representational cost and 𝟕𝟏 × reduction in computational cost 
compared to the best CNN in the SAR ATR literature
• while achieving > 99% classification accuracy on the MSTAR dataset
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Compact Network Architecture

• Parameterizable by 𝑓
• controls the width of the network (complexity)

• 1st layer typically dominates complexity
• standard 3D convolution will contribute to 99% 

of network complexity

• BatchNorm (BN) layers allow for training 
smaller models for the same accuracy
• learning is easier when input statistics are 

normalized
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Compact Network Architecture – 1st Layer

• Factorize the 1st layer into two layers:
• small convolution layer (5 kernels instead of 𝑓)

• pointwise convolution layer
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Training Fixed-Point Networks

• Quantize both weights and activations in the forward path
• keep full-precision copies of the weights for weight updates

• Two key challenges:
• determining a suitable clipping value for quantization

• back-propagating the gradients through non-differentiable quantization 
function
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Training Fixed-Point Networks – Clipping 

• Weights clipping:
𝑐𝑊,𝑙  max( 𝑊𝑙 )

• Activations clipping:

𝑐𝐴,𝑙  max
𝑖∈[𝐶𝑙]

𝛽𝑙
𝑖
+ 3𝛾𝑙

𝑖

• Where for every layer 𝑙 ∈ { ,2, … , 𝐿} :
• |. | is the element-wise absolute value operator

• 𝐶𝑙 is the number of channels in the input activation tensor

• (𝛽𝑙
𝑖
, 𝛾𝑙

𝑖
) are the learnable per-channel shift and scale BN parameters
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guarantees

Pr 𝑥𝑙 ≤ 𝑐𝐴,𝑙 ≥ 0.998 5



Training Fixed-Point Networks – STE 

• Use the straight-through estimator (STE) for calculating the gradients 
of the quantization function:

𝜕ℒ

𝜕𝑥
 
𝜕ℒ

𝜕𝑥𝑞
×
𝜕𝑥𝑞

𝜕𝑥
≈
𝜕ℒ

𝜕𝑥𝑞
× 𝕀{𝑐1 ≤ 𝑥 ≤ 𝑐2}

• 𝑥𝑞  𝑄(𝑥) is the quantized signal

• 𝑐1, 𝑐2 are the quantizer clipping values

• ℒ is the loss function
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Training Fixed-Point Networks – Methodology 
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Complexity Metrics – Computational Cost  

• Captures the number of 1-b full adders (FA) needed to implement the 
multiplications required for a single inference

𝒞𝐶  ෍

𝑙=1

𝐿

𝑁𝑙𝐷𝑙𝐵𝑊,𝑙𝐵𝐴,𝑙

• Where for every layer 𝑙 ∈ { ,2, … , 𝐿} we have:
• 𝑁𝑙 is the number of dot products 
• 𝐷𝑙 is the dot product dimensionality 
• 𝐵𝑊,𝑙 and 𝐵𝐴,𝑙 are the weights and activations bit precisions respectively
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Complexity Metrics – Representational Cost

• Measures the number of bits needed to represent the entire network 
for a single inference:

𝒞𝑅  ෍

𝑙=1

𝐿

𝑊𝑙 𝐵𝑊,𝑙 + 𝐴𝑙 𝐵𝐴,𝑙

• Where for every layer 𝑙 ∈ { ,2, … , 𝐿} we have:
• |𝑊𝑙| and |𝐴𝑙| are the number of elements in the weights and activations 

tensors respectively
• 𝐵𝑊,𝑙 and 𝐵𝐴,𝑙 are the weights and activations bit precisions respectively
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Experimental Setup – MSTAR Dataset

• Benchmark our networks using the publicly available MSTAR dataset
• standard dataset for SAR-based ATR systems
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Floating-Point Results – Accuracy 
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• Comparing the classification accuracy 
of our proposed networks with existing 
network topologies
• proposed low-complexity networks 

remain competitive with > 99% accuracy

• FL-𝑥 denotes our proposed floating-
point network with 𝑓  𝑥
• increasing 𝑓 improves performance

for a fair comparison, all 
the models were trained 

using the same 
hyperparameter setup



Floating-Point Results – Complexity 
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~3.4X

~24X

• At iso-accuracy, our proposed 
networks achieve massive reductions 
in complexity
• increasing 𝑓 increases the complexity

• FL-16 achieves 𝟐𝟒 × reduction in 𝒞𝑅
and 𝟑. 𝟒 × reduction in 𝒞𝐶

FL-32

FL-16



Fixed-Point Results – Impact of Bit Precision
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• Fix the weight and activation 
precision 𝐵𝑊,𝑙  𝐵𝐴,𝑙  𝐵 ∀𝑙 ∈ [𝐿]
• simplifies the search space

• Using 4bits is sufficient to achieve 
> 99% accuracy
• massive reductions compared to 32b 

floating-point



Fixed-Point Results – Comparison
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• At iso-accuracy, our proposed 
fixed-point (FX) networks achieve 
massive reductions in complexity

• FX5-16 achieves 𝟒𝟏 × reduction 
in 𝒞𝑅 and 𝟐𝟏 × reduction in 𝒞𝐶

~29X

~41X

~21X

All models achieving > 99% accuracy



Conclusion & Future Work

• We have presented a set of compact CNN architectures for ATR 
coupled with a fixed-point training methodology

• The proposed networks achieve a total 𝟗𝟖𝟒 × reduction in 𝒞𝑅 and 
𝟕𝟏 × reduction in 𝓒𝑪 compared to SOTA CNNs for ATR, at iso-
accuracy (> 𝟗𝟗%) on the MSTAR dataset

• Future work: mapping the proposed networks onto efficient 
hardware architectures to further facilitate their deployment
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