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 ATR has been an active area of research for decades
e synthetic aperture radar (SAR) imagery guarantees
robust operation
i .
* Deployed on resource-constrained airborne vehicles _
SAR image

* real-time and always-on detection of targets is required

e Accuracy of ATR systems cannot be compromised
» deep learning-based solutions have gained momentum
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Prior Art: Deep Networks for ATR

Network Number of | Number of | Best Reported
Architecture | Parameters MACs Accuracy [%]
Morgan [1] 8K 25M 92.3
Wagner [2] 410K 10M 99.5

Gao [3] 115K 6M 97.8

Ding [4] 231M 2B 93.2

Chen [5] 303K 42M 99.1

 Existing works focus on achieving the best classification accuracy
* ignore the cost of implementing these networks

* The models require floating-point arithmetic for implementation
* prohibitive on resource-constrained devices

10 s

ECE ILLINOIS




Contributions

* We present the design of low-complexity networks for ATR with
minimal loss in classification accuracy via:

e compact network architecture design
* training networks with reduced precision activations and weights

* Our proposed networks achieve a total 984 X reduction in
representational cost and 71 X reduction in computational cost
compared to the best CNN in the SAR ATR literature

* while achieving > 999% classification accuracy on the MSTAR dataset
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Compact Network Architecture

* Parameterizable by f
e controls the width of the network (complexity)

e 15t layer typically dominates complexity

e standard 3D convolution will contribute to 99%
of network complexity

e BatchNorm (BN) layers allow for training
smaller models for the same accuracy

* |learning is easier when input statistics are
normalized
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Layer Type

Layer Shape

Input Shape

Conv

Ox9x1x5H

64 x 64 x 1

BN ) 56 X H6 x H
ReLlU — 56 X H6 x 5
PW-Conv Ix1Ixbxf 56 X 56 x 5
BN f 56 x 56 x f
ReLLlU — 56 x 56 x f
MaxPool 8 X8 56 x 56 x f
Conv 2xX2x fx2f TXTXf
BN 2f 6x6x2f
ReLLU — 6x6x2f
MaxPool 2 X 2 6x6x2f
Conv 2X2x2f xAf | 3x3x2f
BN Af 2x2xA4f
ReLLU - 2x2xA4f
Conv 2xX2xA4f x10 | 2x2xA4f
BN 10 I x1x10
ReLU - I x1x10
FC 10 x 10 I x1x10
Softmax — I x1x10




Compact Network Architecture — 15t Layer

* Factorize the 15t layer into two layers:

* small convolution layer (5 kernels instead of f)
e pointwise convolution layer

small Conv layer PW-Conv layer

Intermediate feature map Output feature map
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complexity reduction of 2.6 X - 4.6 X
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Laver Tvype

Laver Shape

Input Shape

64 x 64 x 1

B\ ) D0 X HO X D
. _ =6 % 56 X 5§
51N 20 X 00 X
ReLLU - 56 x 56 x f
MaxPool 8 X 8 56 x 56 x f
Conv 2xX2x fx2f TXTXf
BN 2f 6x6x2f
ReLLU — 6x6x2f
MaxPool 2 X 2 6x6x2f
Conv 2X2x2f xAf | 3x3x2f
BN Af 2x2xA4f
ReLU — 2x2xA4f
Conv 2xX2xA4f x10 | 2x2xA4f
BN 10 I x1x10
ReLLU — I x1x10
FC 10 x 10 1 x1x10
Softmax — I x1x10




Training Fixed-Point Networks

* Quantize both weights and activations in the forward path
» keep full-precision copies of the weights for weight updates

* Two key challenges:
e determining a suitable clipping value for quantization

* back-propagating the gradients through non-differentiable quantization
function
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Training Fixed-Point Networks — Clipping

* Weights clipping:
cw,. = max(|W])
* Activations clipping:

B () () guarantees
Cal = iren[eclﬁ ( + 3y, ) Pr{xl < CA,l} > 0.99865

* Where for every layerl € {1,2, ..., L} :
* |.| is the element-wise absolute value operator
* (; is the number of channels in the input activation tensor

(:Bz ,yl )) are the learnable per-channel shift and scale BN parameters
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Training Fixed-Point Networks — STE

e Use the straight-through estimator (STE) for calculating the gradients
of the quantization function:
[Bengio - arXiv'13]
oL dL Jx; 0L

- = ¢ 1 < x <
dx 6‘qu dx (?qun{cl XS G}

* Xg = Q(x) is the quantized signal
* c{,Cy are the quantizer clipping values
e Lis the loss function
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Training Fixed-Point Networks — Methodology

ytrue
compute network output
1 compute loss
x — fO >y — L0 — &L
I compute
w Vw,O quantized
Tq 1 weight gradients
compute 00 oL
uantized weight FY
q g awq
| }
oL Py compute full
W wew-—a < «——STE()| precision weight
ow ow gradients via STE

perform SGD weight update
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Complexity Metrics — Computational Cost

e Captures the number of 1-b full adders (FA) needed to implement the
multiplications required for a single inference

L
Cc = z NiD;By 1B
=1

* Where for every layer [ € {1,2, ..., L} we have:
* N, is the number of dot products
* D, is the dot product dimensionality
* By, ; and B, ; are the weights and activations bit precisions respectively
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Complexity Metrics — Representational Cost

* Measures the number of bits needed to represent the entire network
for a single inference:

L
Cr = ) (IWilBw + |4,1B,)
[=1

* Where for every layer [ € {1,2, ..., L} we have:

* |W;| and |A;| are the number of elements in the weights and activations
tensors respectively

* By, ; and By ; are the weights and activations bit precisions respectively
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Experimental Setup — MSTAR Dataset

BTR60

Vehicle | Training Images | Testing Images
Type (17 degrees) (15 degrees)

281 299 274
BMP2 698 587
BRDM?2 298 274
BTRG60 256 195
BTR70 233 196
D7 299 274
T62 299 273
T72 691 582
Z1L131 299 274
ZSU234 299 274

 Benchmark our networks using the publicly available MSTAR dataset
* standard dataset for SAR-based ATR systems
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Floating-Point Results — Accuracy

* Comparing the classification accuracy
of our proposed networks with existing
network topologies

* proposed low-complexity networks
remain competitive with > 999% accuracy

* FL-x denotes our proposed floating-
point network with f = x

* increasing f improves performance
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for a fair comparison, all

the models were trained
using the same

hyperparameter setup

Network Input Crop Test
Architecture Size Accuracy [%]
Prior Art
Morgan [1] | 128 x 128 99.72
Wagner [2] 64 x 64 99.56
Gao [3] 64 x 64 99.31
Ding [4] 128 x 128 99.34
Chen [5] 88 X 88 99.66
Proposed Networks
FL-16 64 x 64 99.38
FL-20 64 x 64 99.47
FL-24 64 x 64 99.41
FL-28 64 x 64 99.56
FL-32 64 x 64 99.66




Floating-Point Results — Complexity

At iso-accuracy, our proposed W
° ° ° i gner
networks achieve massive reductions | > Morgan
in complexity ol v e >
. . . . n L *
* increasing f increases the complexity < : Proposed] |
ETI: :4 24X <
*= |
S 101 i i £ i i 1 il
* FL-16 achieves 24 X reductioninCp =~ | | FL-32 | I~3_4X
and 3.4 X reduction in C, 109;_**1\'!f___4___ ==
| FL-:16 |
1010 1012
Cgr [bits]
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Fixed-Point Results — Impact of Bit Precision

* Fix the weight and activation 100 -
precision By, ; = By; = BVI € [L] § i St sl alr:
* simplifies the search space xX N9 e Y- 4=
5 70
g 98‘ /III;/
8 / 1 !
» Using 4bits is sufficient to achieve < ¢/ » G
> 99% accuracy LA 3 D g
* massive reductions compared to 32b ” ~¢- =32
floating-point 95 ' '
3 4 5 6 7 8
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Fixed-Point Results — Comparison

All models achieving > 99% accuracy

* At iso-accuracy, our proposed . g B
fixed-point (FX) networks achieve ~ 10 f——————————- i
massive reductions in complexity |

é | ~41X | | f =16
:H: | : | —f:20
: . — | ~ f=24

* FX5-16 achieves 41 X reduction S 10%F | 21X : e [ = 28
. . . [ | ~29X e = 32
in Cp and 21 X reduction in C. o8 0_0____] T

——r——‘} ————— | ® X5
| | ¢ FX4
108 10"
CR [bitS]
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Conclusion & Future Work

* We have presented a set of compact CNN architectures for ATR
coupled with a fixed-point training methodology

* The proposed networks achieve a total 984 X reduction in Cy and
71 X reduction in C compared to SOTA CNNs for ATR, at iso-
accuracy (> 99%) on the MSTAR dataset

* Future work: mapping the proposed networks onto efficient
hardware architectures to further facilitate their deployment
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