
LOW-COMPLEXITY FIXED-POINT CONVOLUTIONAL NEURAL NETWORKS FOR
AUTOMATIC TARGET RECOGNITION

Hassan Dbouk?, Hanfei Geng?, Craig M. Vineyard†, and Naresh R. Shanbhag?

?Dept. of Electrical and Computer Engineering, University of Illinois at Urbana Champaign
†Sandia National Laboratories

ABSTRACT
There has been growing interest in developing neural net-
work based automatic target recognition systems for syn-
thetic aperture radar applications. However, these networks
are typically complex in terms of storage and computation
which inhibits their deployment in the field, where such re-
sources are heavily constrained. In order to bring the cost
of implementing these networks down, we develop a set of
compact network architectures and train them in fixed-point.
Our proposed method achieves an overall 984× reduction in
terms of storage requirements and 71× reduction in terms of
computational complexity compared to state-of-the-art con-
volutional neural networks for automatic target recognition
(ATR), while maintaining a classification accuracy of > 99%
on the MSTAR dataset.

Index Terms— deep learning, neural networks, auto-
matic target recognition, synthetic aperture radar, quantiza-
tion

1. INTRODUCTION

The design of automatic target recognition (ATR) systems
based on synthetic aperture radar (SAR) imagery has been an
active area of research for decades. SAR-based ATR systems
are usually deployed on airborne vehicles, where always-on
detection is required and compute resources are limited. A
typical ATR system needs to process large volumes of im-
agery in two steps: first, it needs to identify regions of interest
(ROI) from the original scene and second, it needs to detect
whether specific targets are present in the ROI. This imposes
strict energy and latency constraints on the ATR algorithm
to achieve real-time decision making, as the same detection
algorithm needs to be repeated for every ROI, and for every
new scene. Moreover, the accuracy of ATR systems cannot
be compromised, as they are often involved in mission criti-
cal applications. Therefore, the design of high accuracy low
complexity ATR systems is of utmost importance.

Recently, deep neural networks (DNNs) have been suc-
cessfully deployed in various computer vision tasks [1,2] due

This work is supported by a grant from Sandia National Laboratories and
DARPA FRANC Program.

to their ability to learn complex representations from data.
The performance of convolutional neural networks (CNNs)
for SAR ATR has also been well studied [3–8]. However
these, with the exception of [8], focus on maximizing clas-
sification accuracy without considering network complexity.
CNNs require millions of parameters and up to billions of op-
erations to generate a single inference, making them unsuit-
able for latency- and energy-constrained applications such as
SAR ATR. The authors of [8] propose using spiking neural
networks, and utilize IBM’s TrueNorth chip [9] to acceler-
ate such networks. However, as a consequence of the archi-
tectural limitations in their approach, the best model in [8]
achieves a classification accuracy of 95.67% on the standard
MSTAR dataset.

Our work addresses the problem of designing low com-
plexity neural networks for ATR using networks with a com-
pact architecture and fixed-point quantization that can be
trained to achieve > 99% classification accuracy on the
MSTAR dataset.

1.1. Contributions

In this paper, we present the design of low complexity net-
works for ATR in a systematic fashion, with minimal loss in
classification accuracy. We impose an accuracy constraint of
achieving a classification accuracy of at least 99% on the stan-
dard MSTAR dataset. Our contributions are: 1) we design
compact neural networks for SAR-based ATR using point-
wise convolutions [2]; 2) we further reduce the complexity by
using reduced precision fixed-point and study the impact of
varying bit precision on classification accuracy; 3) we quan-
tify the efficiency of our designs by adopting first order com-
plexity measures: computational and representational costs
as suggested in [10,11]; and 4) we benchmark our implemen-
tation against the state-of-the-art (SOTA) neural networks for
ATR on the standard MSTAR dataset. To ensure a fair com-
parison, we train networks using the same training setup.

The rest of the paper is organized as follows: Section
2 presents the necessary background material, Section 3 ex-
plains our proposed network design methodology. Section 4
demonstrates the results of our method. Section 5 concludes
this paper.

2. BACKGROUND

2.1. Depthwise Separable Convolutional Neural Net-
works

In CNNs, convolutional layers serve as feature extractors.
The standard 2D convolution operation (Conv), parameter-
ized by (K ×K × C ×M), convolves an input feature map
x ∈ RC×H×W , whereC is the number of input channels each
with dimension H ×W , with a set of M kernels {wm}Mm=1,
where wm ∈ RC×K×K , to generate an output feature map
y ∈ RM×E×F , withM channels each with dimensionE×F .
To implement convolutional layers, one needs to be able to
store MCK2 parameters and perform EFMCK2 multiply
and accumulate (MAC) operations.

A depthwise separable convolution (DWS-Conv) [2] fac-
torizes convolutions to reduce the complexity of standard 2D
convolutions. As explained in Figure 1, DW-Conv convolves
each input channel with a 2D kernel separately, and PW-Conv
is a standard 2D convolution with 1 × 1 kernels. Therefore,
depthwise separable convolutions require C(K2 + M) pa-
rameters and EFC(K2+M) MACs which yields a 1

M + 1
K2

reduction in parameters and MACs compared to standard 2D
convolutions.

Output feature mapInput feature map Intermediate feature map

() DW-Conv () PW-Conv

() DWS-Conv

Fig. 1. A depthwise separable convolution (DWS-Conv) [2]
consists of a depthwise convolution (DW-Conv) and a point-
wise convolution (PW-Conv).

2.2. Complexity Metrics

The computational cost [10, 11] of a L-layer neural network
is given by:

CC =

L∑
l=1

NlDlBW,lBA,l (1)

whereNl denotes the number ofDl dimensional dot products
in layer l with BW,l and BA,l being the weights and activa-
tions precisions, respectively. This cost measures the number
of 1-b full adders (FAs) needed to implement the multiplica-
tions required for a given network. We assume that floating-
point models have 32-b representation (single precision). We
ignore the cost of exponent addition in floating-point multi-
plication to favor floating-point since it greatly simplifies the
expression for CC .

The representational cost [10,11] of a L-layer neural net-
work is given by:

CR =

L∑
l=1

(
|Wl|BW,l + |Al|BA,l

)
(2)

where |Wl| and |Al| are the number of elements in the weight
and activation tensors in layer l, respectively. This cost cap-
tures the number of bits needed to represent both the weights
and activations of a model.

The simplicity of these metrics allows us to compare dif-
ferent neural networks from their precision assignment.

3. PROPOSED LOW COMPLEXITY NEURAL
NETWORKS

3.1. Compact Network Architecture

We propose a family of compact network architectures
parametrized by f that controls the width i.e., the number
of 3D filter kernels, of each layer. Except for the first layer,
we employ standard Conv layers with K = 2 to reduce
the number of operations and storage requirements of these
layers. The use of BatchNorm (BN) layers [12] allows us
to train smaller models for the same classification accuracy.
Furthermore, we observe empirically that the first layer re-
quires large kernel sizes to maintain the accuracy constraint
(> 99%). Therefore, we choose a kernel size of K = 9.

For the first layer, the use of a standard Conv with f ker-
nels (9 × 9 × 1 × f) will dominate (≈ 99%) the computa-
tional complexity. Using DWS-Conv (see Figure 1) instead
will reduce the complexity (number of operations) by 13×
− 23× for the values of f used in this work. However, we
observe empirically that the resultant network architectures
fail to achieve an accuracy > 99%. To address this issue,
we propose using a hybrid convolutional layer composed of
a standard Conv with five kernels (9 × 9 × 1 × 5) followed
by a PW-Conv layer with f kernels (1× 1× 5× f) resulting
in a complexity reduction of 2.6× − 4.6× while achieving
an accuracy > 99%, as shown in Section 4. We also apply a
central crop to the MSTAR dataset to reduce the frame size
from 128× 128 to 64× 64 thereby further reducing the com-
plexity of the first layer by a factor of 4.6×. The details of the
network architecture are captured in Table 1.

3.2. Fixed-point Quantization via Training

A quantized model has much less storage requirements com-
pared to a floating-point (FL) model. Moreover, fixed-point
(FX) multipliers/adders are much more area/latency/power
efficient than their FL counterparts. A popular method for
designing FX networks is via training [13], where weights
and activations are quantized in the forward path (inference)
and full precision weights are used for weight updates in the
backward path (training).

Layer Type Layer Shape Input Shape
Conv 9× 9× 1× 5 64× 64× 1
BN 5 56× 56× 5

ReLU − 56× 56× 5
PW-Conv 1× 1× 5× f 56× 56× 5

BN f 56× 56× f
ReLU − 56× 56× f

MaxPool 8× 8 56× 56× f
Conv 2× 2× f × 2f 7× 7× f
BN 2f 6× 6× 2f

ReLU − 6× 6× 2f
MaxPool 2× 2 6× 6× 2f

Conv 2× 2× 2f × 4f 3× 3× 2f
BN 4f 2× 2× 4f

ReLU − 2× 2× 4f
Conv 2× 2× 4f × 10 2× 2× 4f
BN 10 1× 1× 10

ReLU − 1× 1× 10
FC 10× 10 1× 1× 10

Softmax − 1× 1× 10

Table 1. The proposed compact network architecture for
SAR ATR. Parameter f controls the layer width and hence
the network complexity. A Conv layer is parameterized by
(K ×K × C ×M).

The main challenge in training quantized networks is in
back-propagating the gradients of the quantized parameters
through the non-differentiable quantization function. One
simple yet successful trick to overcome this challenge is ap-
proximating the gradient using a straight through estimator
(STE) [14]. The STE can be used to compute the gradient of
the loss functionLwith respect to the full precision parameter
x:

∂L
∂x

=
∂L
∂xq
× ∂xq

∂x
≈ ∂L
∂xq
× 1{c1≤x≤c2} (3)

where 1{} is the indicator function, xq is the quantized pa-
rameter, and c1 and c2 are clipping values needed for quantiz-
ing x. For the case of a signed quantizer needed for weights,
we use −c1 = c2 = c for some c > 0. As for quantizing
unsigned values (needed for activations) we use c1 = 0 and
c2 = c for some c > 0. For quantizing weights in the forward
path, for every layer l ∈ [L] we use a clipping value:

cW,l = max(|Wl|) (4)

thus eliminating any clipping noise. Quantizing activations is
a bit more involved than quantizing weights, because the max-
imum absolute value can change arbitrarily from one mini-
batch to another during training. To determine a suitable clip-
ping value for activations, we leverage the properties of BN
layers and the central limit theorem (CLT). For a given layer

l, we clip the post BN activations xl using:

cA,l = max
i∈[Cl]

(β
(i)
l + 3γ

(i)
l) (5)

where Cl is the number of channels in the activation ten-
sor xl and (β

(i)
l , γ

(i)
l) are learnable per-channel shift and

scale parameters of BN. It is well known that the distribu-
tion of x(i)l can be approximated as a normal distribution
N
(
β
(i)
l , (γ

(i)
l)2

)
[12]. Therefore, using this approximation

and the 3σ rule, one can show that the choice of cA,l in (5)
guarantees:

Pr{xl ≤ cA,l} ≥ 0.99865 (6)

Note that having a fixed clipping value cA,l for all channels is
crucial in order to ensure that the dot product operations can
be implemented in FX.

Vehicle Training Images Testing Images
Type (17 degrees) (15 degrees)
2S1 299 274

BMP2 698 587
BRDM2 298 274
BTR60 256 195
BTR70 233 196

D7 299 274
T62 299 273
T72 691 582

ZIL131 299 274
ZSU234 299 274

Table 2. MSTAR training and test sets.

4. RESULTS

4.1. Experimental Setup

To benchmark our networks, we use the popular and pub-
licly available moving and stationary target acquisition and
recognition (MSTAR) dataset, which is the standard dataset
for benchmarking SAR ATR systems. Table 2 summarizes
the dataset. We use the commonly used train/test split as
in [4], that is images collected at 17 degrees depression an-
gles are used for training, and images collected at 15 degrees
depression angles are used for testing. The dataset consists
of grayscale images of size 128× 128 distributed amongst 10
classes. All the networks were trained using vanilla SGD for
200 epochs from scratch. We used an initial learning rate of
0.01 which was divided by 10 every 50 epochs. We chose a
batchsize of 140. Weight regularization was employed with a
value of 9×10−4. We also use data augmentation in our train-
ing setup. Specifically, we use two separate stages of elastic
distortion (ED) [4] to effectively triple our training set. Both
stages use Guassian kernels with standard deviations of 3 with
scales set to 10 (first stage) and 20 (second stage).

~3.4X

~24X

(a) (b)

~29X

~41X

~21X

(c)

Fig. 2. Plots showing: (a) CC vs CR for the proposed FL compact network architectures and state-of-the-art networks, (b) the
test accuracy of the proposed FX networks vs bit precision, and (c) CC vs CR for the FX networks and the FL networks.

4.2. Floating-point (FL) Results

We trained five FL models using our proposed compact archi-
tecture with f ∈ {16, 20, 24, 28, 32} denoted by FL-f (see
Table 1). We also reproduced the results of five SOTA ATR
convolutional neural networks from the literature [3–7] using
the same setup to ensure a fair comparison. All ten FL mod-
els achieve a classification accuracy > 99% on the MSTAR
dataset, and Table 3 summarizes their performance. Figure
2a demonstrates the effectiveness (in terms of CC and CR) of
the proposed FL networks. The most compact network (FL-
16) achieves a 24× reduction in CR and 3.4× reduction in
CC compared to SOTA while still meeting the accuracy con-
straint. Note that the network in [6] is not shown in Figure
2a because it exhibits extremely large values for CR (∼ 1016)
and CC (∼ 1012).

Network Input Crop Test
Architecture Size Accuracy [%]

Prior Art
Morgan [3] 128× 128 99.72
Wagner [4] 64× 64 99.56

Gao [5] 64× 64 99.31
Ding [6] 128× 128 99.34
Chen [7] 88× 88 99.66

Proposed Networks
FL-16 64× 64 99.38
FL-20 64× 64 99.47
FL-24 64× 64 99.41
FL-28 64× 64 99.56
FL-32 64× 64 99.66

Table 3. Summary of the performance (in terms of test accu-
racy on the MSTAR dataset) of recently published and pro-
posed CNNs for SAR ATR. All networks achieve a test ac-
curacy > 99%. FL-x denotes a floating-point model with
f = x.

4.3. Fixed-point (FX) Results

In order to train fixed-point (FX) versions of our compact net-
works, we need to determine the bit precisions of all weights
(BW,l) and activations (BA,l) ∀l ∈ [L]. A brute force search is
computationally expensive, since the search space is huge and
the training of each network takes much time even on GPUs.
To simplify the search, we fix BW,l = BA,l = B , sweep B
from 3 to 8, and for each value of B train the five proposed
networks denoted by FXB-f with f ∈ {16, 20, 24, 28, 32}.

Figure 2b shows that for B ≥ 5, all models achieve a test
accuracy > 99% (our stated accuracy constraint). For B = 4,
only models with f ∈ {24, 28, 32} satisfy this constraint. The
test accuracy degrades noticeably for B = 3.

Figure 2c shows that FX5-16 is the best model in terms of
CR achieving a 41× reduction compared to the lowest com-
plexity FL-16. As for CC , FX4-24 is the best model achieving
a 29× reduction compared to the lowest complexity FL-16.

Thus FX5-16 achieves a total 24× 41 = 984× reduction
in CR and 3.4×21 ≈ 71× reduction in CC compared to SOTA
CNNs for ATR, while maintaining a test accuracy > 99% on
the MSTAR dataset.

5. CONCLUSION

While CNNs have been studied to a great extent in various
image classifications tasks, not much work has been done
for ATR applications and that consider their implementa-
tion complexity. We have presented a set of compact CNN
architectures for ATR coupled with a fixed-point training
methodology to reduce the numerical precision required for
weights and activations. The proposed reduced complex-
ity networks are suitable for resource-constrained applica-
tions such as SAR ATR, and exhibit an inherent accuracy-
complexity tradeoff via tuning the design parameters (f,B).

Future work includes mapping the proposed networks
onto efficient hardware architectures, such as the deep in-
memory architecture [15], to further facilitate their deploy-
ment.

6. REFERENCES

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations,” arXiv preprint arXiv:1704.04861, 2017.

[3] David AE Morgan, “Deep convolutional neural net-
works for ATR from SAR imagery,” in Algorithms for
Synthetic Aperture Radar Imagery XXII. International
Society for Optics and Photonics, 2015, vol. 9475, p.
94750F.

[4] Simon A Wagner, “SAR ATR by a combination of con-
volutional neural network and support vector machines,”
IEEE transactions on Aerospace and Electronic Sys-
tems, vol. 52, no. 6, pp. 2861–2872, 2016.

[5] Fei Gao, Teng Huang, Jinping Sun, Jun Wang, Amir
Hussain, and Erfu Yang, “A new algorithm for SAR im-
age target recognition based on an improved deep con-
volutional neural network,” Cognitive Computation, pp.
1–16, 2018.

[6] Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan
Huang, “Convolutional neural network with data aug-
mentation for SAR target recognition,” IEEE Geo-
science and remote sensing letters, vol. 13, no. 3, pp.
364–368, 2016.

[7] Sizhe Chen, Haipeng Wang, Feng Xu, and Ya-Qiu Jin,
“Target classification using the deep convolutional net-
works for SAR images,” IEEE Transactions on Geo-
science and Remote Sensing, vol. 54, no. 8, pp. 4806–
4817, 2016.

[8] Megan Renz and Qing Wu, “An energy-efficient em-
bedded implementation for target recognition in SAR
imageries,” in 2017 IEEE Symposium Series on Com-
putational Intelligence (SSCI). IEEE, 2017, pp. 1–5.

[9] Steven K Essera, Paul A Merollaa, John V Arthura, An-
drew S Cassidya, Rathinakumar Appuswamya, Alexan-
der Andreopoulosa, David J Berga, Jeffrey L McK-
instrya, Timothy Melanoa, Davis R Barcha, et al., “Con-
volutional networks for fast energy-efficient neuromor-
phic computing,” Proc. Nat. Acad. Sci. USA, vol. 113,
no. 41, pp. 11441–11446, 2016.

[10] Charbel Sakr, Yongjune Kim, and Naresh Shanbhag,
“Analytical guarantees on numerical precision of deep

neural networks,” in Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70.
JMLR. org, 2017, pp. 3007–3016.

[11] Charbel Sakr and Naresh Shanbhag, “Per-tensor fixed-
point quantization of the back-propagation algorithm,”
arXiv preprint arXiv:1812.11732, 2018.

[12] Sergey Ioffe and Christian Szegedy, “Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[13] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio, “Binarized neural net-
works,” in Advances in neural information processing
systems, 2016, pp. 4107–4115.

[14] Yoshua Bengio, Nicholas Léonard, and Aaron
Courville, “Estimating or propagating gradients
through stochastic neurons for conditional computa-
tion,” arXiv preprint arXiv:1308.3432, 2013.

[15] Mingu Kang, Sujan K Gonugondla, Ameya Patil, and
Naresh R Shanbhag, “A multi-functional in-memory in-
ference processor using a standard 6t sram array,” IEEE
Journal of Solid-State Circuits, vol. 53, no. 2, pp. 642–
655, 2018.

