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Abstract 

The area and power consumption of oversampling analog-to-digital 
converters (ADCs) are governed largely by the associated digital 
decimation filter. This paper presents a low power, area-efficient 
digital decimation filter for an oversampling ADC application that 
employs the decorrelating (DECOR) transform in order to reduce the 
power dissipation and area. The DECOR transform exploits the 
correlation in the coefficients and data sequences to reduce the 
precision. Simulation results indicate that a decorrelated 8 192-tap 
decimation filter with a decimation ratio of 64 results in a reduction 
of 5 bits in the coefficient and accumulator size. This corresponds to 
savings in complexity of 25%. In multi-stage decimation filters, it is 
shown that the decimation ratio of the last stage needs to be greater 
than 4 for DECOR to be useful. 

I. Introduction 
Oversampling analog-to-digital converter (ADC) techniques have 

been most popular in systems which need accuracy greater than 13 
bits such digital audio, music synthesizers and voice coders. While 
the conversion rate and resolution of oversampling ADCs are 
typically determined by their analog components, the power 
consumption and die area are largely governed by the digital 
decimation filters [ l ] .  In fact, digital decimation filter blocks occupy 
more than 60% of the total die area of oversampling ADCs. This 
paper applies the decorrelating (DECOR) transform [2] to FIR 
decimators to obtain low-power/low-area implementations. Using 
DECOR, the transfer function and/or the input is decorrelated such 
that fewer bits are required to represent coefficients and inputs. Thus 
the size of the arithmetic units, including ROM, multiplier, adder, 
and accumulator in  the filter is reduced, reducing the power 
consumption and die area. The DECOR transform results in  lower 
overhead and hence, a higher reduction in power consumption 
compared to other similar transforms [3]. The delta-sigma modulator 
in  oversampling ADC systems and DECOR transforms are briefly 
reviewed in section I1 and 111, respectively. In section IV, original 
filter coefficients and decorrelated coefficients in different FIR 
decimator architectures are applied to PDM signal to filter out-of- 
band noise. Then, the signal-to-noise ratio (SNR) is estimated along 
with the number of coefficient bit and power reduction. 

11. The Delta-Sigma Modulator 
In delta-sigma modulators, sampling and processing of the input 

signal are performed at an oversampled rate (f,,=OSR * f,,), where f,, 
is the oversampling frequency, OSR is the oversampling ratio, f,, is 
the Nyquist sampling frequency. Most oversampling ADCs are 
composed of a delta-sigma modulator and decimator. Fig. 1-(a) 
shows the first order delta-sigma modulator connected to an FIR 

decimator and Fig. I-(b) shows the equivalent model of the first order 
delta-sigma modulator. 
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Fig. 1. The oversampling ADC system block diagram: (a) The first 
order delta-sigma modulator. (b) The equivalent model of the first 
order deltasigma modulator. 

H,,(z) is the transfer function of the analog loop filter and e(n) is the 
quantization noise. Analyzing this linearized circuit in the z-domain, 
the output is found to be 

where H,(z) and H d z )  are the signal and noise transfer functions, 
respectively, and are given by 

Y ( z )  = H S ( Z ) X ( Z ) +  H N ( z ) E ( z ) ,  (1) 

1 
H N ( ~ )  =- = 1 - z - ' ,  (3 )  

H,(Z)+l 
where the loop filter transfer function H,(z) = z - ' / ( l - z~ ' ) .  Thus, the 
digital output contains a delayed replica of the analog input signal plus 
noise whose spectrum is that of the quantization noise e(n)  shaped by 
the noise transfer function, H J z )  , 

where T = l/fos is the sampling period. For low frequencies, where oT 
<< 1 ,  I f f J z ) l  = KIT indicating that H J z )  is a high-pass filter function. 
Thus, the noise power is swept out of baseband and into high 
frequencies where it can be eliminated by a low-pass digital 
decimation filter following the modulator stage. Extending equations 
(2) and (3). we obtain generalized equations for an L-th order delta- 
sigma modulator as follows, 

I HA&"') I=2sin( UT), (4) 

H d z )  = z ( 5 )  
H J z )  = ( I - Z . ' ) ~  (6 )  
IH,,,(d"')I = psinL(wT). (7 )  

Fig. 2 shows the noise-shaping property of delta-sigma modulators. 
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Fig. 2. Noise-shaping curves for various modulator orders L. 

From Fig. 2, we see that as the modulator order increases more noise 
in baseband is shifted into the high frequency region. A 5-th order 
delta-sigma modulator with feedforward and feedback coefficients 
[4] was synthesized and simulated using the delta-sigma toolbox to 
create PDM a signal as an input for the decimation filter. The 
Hanning window is applied in order to reduce frequency sidelobes in 
estimating the SNR in the baseband. From Fig. 3, the estimated SNR 
is 116.ldB which corresponds to the effective number of bits being 
18.99 obtained via the following equation [ 5 ] ,  

SNR = 6.02 N + 1.76dB, 
where N is the number of bits. 

(8) 
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Fig. 3. The frequency plot and estimated SNR of a 5th order delta- 
sigma modulator. 

111. Low-Power Decimator Architectures 
In this section, the DECOR transform is briefly reviewed and then 
applied to fixed coefficient FIR decimators. 

A. The DECOR Transform and Decimation Filter 

In DECOR, a finite-precision transfer function, H ( z ) ,  is transformed 
as: 

(9) 

Note that the frequency response is not altered by DECOR as long as 
finite precision effects are considered. The numerator polynomial 
H ( z ) ( l  + az O)“ results in a filter with decorrelated coefficients 
requiring fewer bits. However, the denominator ( I  + a ~ . ~ ) ” ’  
introduces a recursive section. In 121, values of a = -1, p =1, and 
m=l were recommended for low-pass filters such as the decimator. 
One can easily verify that a symmetric filter such as the decimator is 
converted to an anti-symmetric filter and vice-versa when the 
DECOR transform is applied. The effectiveness of DECOR is 

increased with a reduction in the passband width, as would be in the 
case of decimation filter. 

B. Low-Power Decimator Architectures 
In the FIR decimator [6] shown in Fig. 4, the signal x(n)  is idigitally 
filtered by a low-pass filter h(n) with a digital cutoff frequency of 
nlM, where 71 is the normalized radian frequency corresponding to 
half the sampling frequency. 

Sampling Rate 
Compressor 

x(n) 

Fig. 4. Conceptual decimator block diagram. 

It is clear that as the decimation ratio M increases, the filter bandwidth 
is reduced, thereby meeting the narrow passband condition for which 
DECOR is well suited. In practice, the decimation process is 
performed by computing only one out of every M outpuLs of the 
digital filter. A decimator with decimation ratio M can be 
implemented via a single or multi-stage architecture. Generally, a 
multi-stage decimator has smaller die size and power dissipation than 
does a single-stage decimator [6] .  

Fig. 5 shows a single-stage, 8192-tap, multiplier-free decimator with a 
decimation ratio of 64 and 1-bit data input. 

Fig. 5. Single-stage multiplier-free decimator. 

The first-half decorrelated coefficients are stored in a 64 page read- 
only-memory (ROM), each page with 64 words. The sign change is 
inserted in Fig. 5 to account for the anti-symmetry in the second-half 
decorrelated coefficients. Fig. 6 shows the decimator block diagqam. 
These can be easily derived from the architecture in 171. It was 
assumed that the 2’s complement number system was used. The sign 
change block was inserted to invert the sign of the filter coefficienrs in 
the second half of the decimation filter. Further, instead of changing 
the sign of the coefficient, the sign of the data input is changed. 

111- 10 



v- 
Fig. 6. The decimator block diagram. 

IV. Application of DECOR to FIR Decimator 
Here, we apply DECOR to typical decimator configurations, 

including: 1 .) a multiplier-free single-stage decimator with a 
decimation ratio of 64, 2.) a two-stage decimator consisting of a 
stage of decimation ratio 32 followed by a stage of decimation ratio 
2 and 3.) a two-stage decimator consisting of a stage of decimation 
ratio 16 followed by a stage of decimation ratio 4. This is done in 
order to determine the range of parameter for which DECOR is 
effective. Also, the amount of coefficient bit-width reduction is 
estimated without any rounding or truncation at the multiplier or 
accumulator output, and the SNR will be estimated before and after 
applying DECOR. For numerical simulations, the filter coefficients 
are generated using the Parks-McClellan algorithm. The digital audio 
specifications (OSR=64, fn,=44. IKHz) [SI were used in our 
simulations. 

A. Single-stage Decimator 
Fig. 7-(a) shows the original and decorrelated 8 192-tap coefficients 
of a single-stage decimator with a decimation ratio of 64 and Fig. 
7-(b) shows its magnitude response. 
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Fig. 7. (a) The original and decorrelated 8192-tap coefficients of 
single-stage decimator. (b) The magnitude response of Fig. 7-(a). 
The frequency plot of the decimator output using the original and 
decorrelated coefficients of Fig. 7-(a). 

As shown in Fig. 7-(c), we get identical frequency responses and 
SNRs (1 16.6dB) using the original and decorrelated coefficients. 
From Fig. 7-(a), we obtain the ratio, 48.99, between the maximum 
magnitudes of original and decorrelated coefficients, which results in 
coefficient bit-width reduction of 5 bits. 

B. Multi-stage Decimator 
Fig. %(a) shows a two-stage decimator consisting of stages with 
decimation ratios 32 and 2. Fig. 8-(b) shows the original and 
decorrelated coefficients of the two-stage decimator and Fig. 8-(c) 
shows the magnitude responses of Fig. 8-(b). 
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Fig. 8. (a) Two-stage decimator block diagram with 32, 2 decimation 
ratio in first and second stage. (b) The original and decorrelated 
coefficients of LPFl and LPF2 for Fig. &(a). (c) The magnitude 
response of LPFl and LPF2 corresponding to Fig. 8-(b). (d) The 
frequency plot of the decimator output using the original and 
decorrelated coefficients of Fig. 8-(b). 

Again, as shown in Fig. 8-(d) we get identical SNRs (116.9dB) using 
the original and decorrelated coefficients. From Fig. 8-(b), we get 4- 
bit coefficient reduction in LPFI, but no bit coefficient reduction in 
LPF2. This is due to the fact that the bandwidth of LPF2 is 0 .4535~.  
According to [2], DECOR is effective in power and area reduction for 
filter bandwidths ranging from 0.371 to 0 . 0 5 ~ .  Thus the simulation 
results well agree with this condition. 
For another example, a two-stage decimator consisting of a stage of 
decimation ratio 16 followed by a stage of decimation ratio 4 shown 
in Fig. 9-(a) was simulated. Fig. 9-(b) shows the original and 
decorrelated coefficients of the two-stage decimator and Fig. 9-(c) 
shows the magnitude responses of Fig. 9-(b). From Fig. 9-(d), we get 
identical S N R s  (1 16.9dB) using the original and decorrelated 
coefficients. From Fig. 9-(b), we get 4-bit coefficient reduction in 
LPFl and 1-bit coefficient reduction in LPF2. The bandwidth of LPFl 
is 0 .01415~ and that of LPF2 is 0 .2268~.  
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LPFZ of two-stage decimator 
with decimation ratios of 32,2 

LPFl of two-stage decimator 
with decimation ratios of 16,4 

0.4535~ 0 bit 

Decimator architectures Bandwidth 

Single-stage decimator with 

decimation ratio of 64 

LPFl of two-stage decimator 
with decimation ratios of 32,2 

0.01415~ 

0.01415~~ 

Transistor 
count 

reduction 

Bit 
reduction 

5 bit 25 % 

4 bit 22 % 

Equation (10) indicates that the earlier stage has much narrower 
bandwidth than later stage resulting in more power and area reduction. 
Generally, OSR is identical to the overall decimation ratio M ,  

N 

i = l  
M =  n M i .  (11) 

Therefore increasing the OSR improves the effectiveness of DECOR 
in reducing the power and area of the decimator by narrowing the 
bandwidth of the decimator. 

LPFZ of two-stage decimator 
with decimation ratios of 16,4 

0 .2268~ 

V. CONCLUSION 

1 bit 8 %  

In this paper, the DECOR transformation has been applied to 
decimation filters to reduce the power and area. The dec:imation 
process was performed using a PDM signal generated from 5- th order 
delta-sigma modulator with OSR of 64 and original and decorrelated 
coefficients of various decimator architectures. The SNR was 
compared and the bit-width reductions in filter coefficients were 
measured to verify the effectiveness of DECOR to the decimation 
process. 
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Considering the N-stage decimator with decimation ratio M ,  at i-th 
stage, the bandwidth of k-th stage is given by, 

BW k -  -- $ ‘ ’ (10) 
n M j  

i = k  
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