

Title: Deep In-memory Architectures in SRAM: An Analog Approach to
Approximate Computing

Archived version Accepted manuscript: the content is identical to the published
paper, but without the final typesetting by the publisher

Published version
DOI : 10.1109/JPROC.2020.3034117

Journal homepage https://proceedingsoftheieee.ieee.org/

Authors (contact)
Mingu Kang (m7kang@ucsd.edu)
Sujan Gonugondla (gsujan@amazon.com)
Naresh R. Shanbhag (shanbhag@illinois.edu)

Affiliation
University of Illinois at Urbana Champaign
University of California San Diego
Amazon

Article begins on next page

1

Deep In-memory Architectures in SRAM: An
Analog Approach to Approximate Computing

Mingu Kang, Member, IEEE, Sujan K. Gonugondla, Student Member, IEEE, and
Naresh R. Shanbhag, Fellow, IEEE

Abstract—This paper provides an overview of recently pro-
posed deep in-memory architectures (DIMAs) in SRAM for
energy and latency-efficient hardware realization of machine
learning (ML) algorithms. DIMA tackles the data movement
problem in von Neumann architectures head-on by deeply em-
bedding mixed-signal computations into a conventional memory
array. In doing so, it trades-off its computational signal-to-noise
ratio (compute SNR) with energy and latency, and therefore
represents an analog form of approximate computing. DIMA
exploits the inherent error immunity of ML algorithms and
SNR budgeting methods to operate its analog circuitry in a
low-swing/low compute SNR regime thereby achieving >100×
reduction in the energy-delay product (EDP) over an equivalent
von Neumann architecture with no loss in inference accuracy.

This paper describes DIMA’s computational pipeline, provides
a Shannon-inspired rationale for its robustness to process, tem-
perature and voltage variations, and design guidelines to manage
its analog non-idealities. DIMA’s versatility, effectiveness and
practicality, demonstrated via multiple silicon IC prototypes in
a 65 nm CMOS process is described. A DIMA-based instruction
set architecture (ISA) to realize an end-to-end application-to-
architecture mapping for the accelerating diverse ML algorithms
is also presented. Finally, DIMA’s fundamental trade-off between
energy and accuracy in the low compute SNR regime is analyzed
to determine energy-optimum design parameters.

Index Terms—accelerator, in-memory computing, artificial in-
telligence, machine learning, energy efficiency, non von Neumann.

I. INTRODUCTION

There is growing interest in employing decision making
capabilities based on artificial intelligence (AI) algorithms
into various sensor-rich platforms at the Edge such as health-
care, internet-of-things (IoT), robots, autonomous driving,
and many others. Though deep neural network (DNN)-based
machine learning (ML) algorithms have begun to exceed the
human capabilities in complex decision-making tasks [1], [2],
they require processing of large data volumes. On the other
hand, such applications require inferences to be generated
under stringent constraints on the form factor, latency, and
energy. Therefore, implementing ML algorithms on resource-
constrained Edge platforms is an important problem that needs
to be addressed.

When subject to severe resource constraints, it is critical
that the design of AI computational platforms comprehend
the fundamental trade-off between three primary system-level
metrics: 1) inference accuracy, 2) latency and throughput,
and 3) energy-efficiency. Today, it is well-established that the
energy and latency costs of decision-making are dominated
by memory accesses, e.g., it takes roughly 20 − 100 pJ per

Fig. 1. Inference architectures: (a) the digital (von Neumann) architecture,
(b) the near-memory architecture, (c) the logic-in-memory (LIM) architecture,
and (d) the deep in-memory architecture (DIMA), where W is the weight
parameter stored in memory and X is the input.

16-bit word access from a 32 kB - 1 MB SRAM versus 1 pJ
per multiplication in a 45 nm process [3]. Recent hardware
implementations of deep neural networks (DNN) [4], [5]
support this assertion reporting 35% and 45% of the total
energy cost due to memory accesses.

As a result, an emerging trend in compute architectures for
AI is from the traditional von Neumann (digital) architecture
[4]–[9] (Fig. 1(a)) towards near-memory [10]–[15] (Fig. 1(b)),
logic in-memory (LIM) (Fig. 1(c)), and deep in-memory archi-
tectures (DIMAs) [16]–[18] (Fig. 1(d)), whereby the memory
access costs are alleviated by bringing computation in close
physical proximity to memory. While digital architectures
(Fig. 1(a)), still the mainstream architecture today, strive to
minimize memory accesses via techniques such as efficient
data-flow, data reuse, and computation reduction, near-memory
architectures (Fig. 1(b)) distribute computations around mem-
ory banks or employ 3D technologies that physically stack
memory over traditional CMOS dies. However, like digital
architectures, near-memory architectures preserve the intrinsic
separation between the memory and processor. LIM archi-
tectures (Fig. 1(c)) [19]–[23] employ memory bitcells (BCs)
with embedded digital logic to realize useful computations in
memory. This approach requires specialized BCs (e.g., 16T
in CMOS [19], [20] or 2T-2R [21] / 4T-2R [22], [23] struc-
tures in emerging technologies), which prevents exploiting
the highly optimized design process for the conventional BC
arrays, e.g., layout design rules, and mask layers. In contrast,
DIMA (Fig. 1(d)) [16], [24]–[43] embeds analog computations
close to the memory bitcell array (BCA) to overcome the
memory-processor interface limitations. As compared to an
equivalent von Neumann architecture, DIMA implementations
have demonstrated more than 100× reduction in energy-delay
product (EDP) of decisions via multiple integrated circuit (IC)

2

prototypes [16], [24]–[43].
ML algorithms offer a unique opportunity to trade-off

accuracy with decision EDP due to their ability to tolerate
computational errors and due to their use of statistical metrics,
e.g., misclassification rate. As a result, a number of approx-
imate computing techniques have been proposed [44]–[55]
for realizing ML tasks. These include: 1) algorithmic level
techniques such as pruning in DNN [44], [56], stochastic or
probabilistic computation [51], [52], and incremental refine-
ment [49], [50], 2) computations in reduced precision [45],
[46] or dynamic precision adaptation [57], 3) approximate
arithmetic components to save gate count [47], [48], [53],
[58], and 4) approximate logic synthesis [54], [55]. Most of
these techniques have been applied to digital architectures
(Fig. 1(a)). In contrast, since DIMA reduces the energy-delay
product (EDP) of inference by amortizing the latency and
energy costs of a single (intrinsically analog) read cycle over
massive numbers of computations, these architectures, much
like the above mentioned approximate computing techniques,
exhibit an intrinsic trade-off between the accuracy of their
computations (via their compute SNR) and energy efficiency.
Therefore, DIMA offers a unique approach to approximate
computing in the context of AI applications.

While many DIMA architectures have been proposed, in this
paper, we focus on DIMA [16], [24]–[43] which refers to in-
memory architectures that realize useful computations on the
bitlines (BLs) of the BCA in the low compute SNR domain,
as an intrinsic part of the read cycle. Furthermore, embedding
computations on the BLs makes DIMA a massively parallel
architecture for realizing a matrix-vector multiply (MVM)
compute kernel – a pervasive kernel in ML algorithms. In this
paper, we present DIMA with its intrinsic SNR vs. energy
trade-off as an analog approach to approximate computing for
ML applications.

This paper is organized as follows: Section II provides an
overview of DIMA including its various stages of DIMA com-
putation. Design guidelines and a Shannon-inspired rationale
for its intrinsic robustness to PVT variations are provided in
Section III. DIMA’s versatility in realizing a broad class of ML
algorithms is described via two case studies in Section IV. In
Section V, we demonstrate the use of algorithmic approaches
that exploit the intrinsic accuracy vs. energy trade-off of
DIMA to push the limits of its energy efficiency via case
studies based on two prototype ICs. Finally, in Section VI, we
discuss DIMA’s fundamental trade-offs in EDP vs. accuracy
and identify the most effective design parameters to maximize
its EDP benefits over a digital architecture.

II. THE DEEP IN-MEMORY ARCHITECTURE (DIMA)

This section provides an overview of DIMA. First, the
attributes of an idealized DIMA are presented. Then, DIMA
is compared with a conventional von Neumann (digital) archi-
tecture to identify the key differences. Next, DIMA’s analog
computational pipeline, is described along with a rationale for
its energy and delay benefits over its digital counterpart.

A. Idealized DIMA

We define an idealized DIMA as one that satisfies the
following properties:

1) use of a standard BCA: preserves memory density by
using a standard memory BC architecture.

2) row parallelism: activates all rows in the BCA simul-
taneously.

3) BL computations: realizes useful analog computations
on the BLs.

4) delayed decision: implements analog computations on
the BL outputs to delay hard-decisions (i.e., digitiza-
tion, comparison, sense amplification). This requires
the design of column-pitch-matched analog circuits that
operate in massively parallel fashion.

In practice, existing DIMAs [16], [24]–[43] strive to satisfy
these properties to various degrees but none are able to do so
fully. Difficulties in satisfying these properties arise due to the
high compute SNR requirements often imposed by designers
and sometimes by applications, stringent density constraints,
device variability, technology limitations, and others. In this
sense, DIMA is a full-stack technology that requires one to op-
timize across applications, systems/algorithms, architectures,
circuits and devices.

In the following, we focus on a version of DIMA [16],
[17], [24], [26]–[28], [59], [60] that embodies to the fullest
extent three of the four properties of an ideal DIMA listed
above (property 2 is partially realized). In doing do, we
present DIMA’s intrinsic SNR vs. energy trade-offs and design
methods that exploit DIMA’s full-stack nature to push the
limits of energy, latency and accuracy.

B. DIMA vs. Digital Architecture

We assume that both conventional digital system (Fig. 2(a))
and DIMA (Fig. 2(b)) employ a NROW ×NCOL SRAM BCA
based on the standard 6T BC architecture. The read cycle in
both architectures is initiated by precharging the BLs to VPRE.
What occurs next differs in each architecture.

In the digital architecture, one row of the BCA is activated
so that each of the NCOL BL pairs develops a voltage discharge
∆VBL in proportion to the bit value stored in the activated BC.
Next, the L : 1 (typically L = 4, ..., 16) column multiplexers
in the periphery of the BCA routes one-of-L BL outputs to
the sense amplifiers (SAs) which amplify ∆VBL to full-rail
(digital) swing. The column multiplexers allow pitch-matching
of large-footprint SAs across multiple columns and the SAs are
designed to achieve a very low bit error rate when converting
BL discharge into a digital bit.

In contrast, DIMA activates multiple (M) rows so that the
voltage discharge ∆VBL on a specific BL is a function of
M bits stored in that column. Furthermore, DIMA eliminates
column multiplexers and the SAs altogether and instead pro-
cesses the BL discharges on all NCOL BL pairs in parallel
via mixed-signal circuits pitch-matched to the BCA columns.
Analog-to-digital (A/D) conversion is delayed as long as
possible by employing low-voltage energy-efficient mixed-
signal computations to minimize the burden on the analog-
to-digital converter (ADC). In this manner, DIMA, unlike a

3

digital architecture, computes functions of stored data as an
intrinsic part of its read cycle, in a massively parallel fashion,
and in analog. Note: the write process in both architectures is
identical therefore all the benefits from DIMA accrue from its
unique read process.

The differences between DIMA and the conventional digital
architecture are summarized in Fig. 2(c).

C. DIMA and its Variants

The DIMA (Fig. 2(b)) employs an NROW × NCOL SRAM
BCA using a standard 6T [25], [26] BC to store the weights
W while streaming in an external input X (see Fig. 1(c)).
DIMA designs using 8T [34] or modified BCs [29], [61] have
been designed but at a loss in storage density – a critical
metric in memory designs. DIMA’s compute mode involves
the following sequentially executed processes:

• Multi-row functional read (FR): computes weighted sums
of the multiple (M ≤ NROW) stored bits in each column.
It does so by generating BL voltage discharges or BL
currents proportional to the weighted sum on the NCOL
BLs in parallel per read cycle.

• BL processing (BLP): performs the scalar distance (SD)
computation between W and X per column low-swing
charge redistribution circuits to enhance energy efficiency
[26]. The NCOL BLP blocks operate in parallel in a single-
instruction multiple-data (SIMD) fashion.

• Cross BL processing (CBLP): aggregates the NCOL BLP
outputs via charge-sharing to obtain the vector distance
(VD).

• Analog-to-digital converter (ADC) and residual digital
logic (RDL): converts the analog CBLP output into the
digital domain for further processing. For simple ML ker-
nels such as the support vector machine (SVM) [62], the
ADC generates the final decision. The RDL implements
simple functions such as ReLU, min, max, and majority-
voting or processes intermediate results.

Thus, DIMA is a highly efficient, i.e., a low-EDP MVM
engine and its architecture is matched well to the data-flow
intrinsic to widely employed ML algorithms. DIMA processes
inference (forward path) computations in DNNs most effi-
ciently though it can also be employed for MVM computations
in the back-propagation algorithm [63] employed in training.

There are many variants of the basic DIMA described above
including:

1) setting M = NROW, constraining the bit precision of W
Bw = 1-bit, in order to access all the rows at a time
[25], [31].

2) implementing CBLP in the digital domain after the per-
column ADCs [27], [35].

3) restricting all computations to the FR stage only [25].
4) performing specialized functions such as XOR or XNOR

within the BCs [33], [65].
5) employing sense amplifiers (SAs) or comparators instead

of ADCs [25], [27], [31], [34].
6) by dividing the array into sub-banks, where each sub-

bank implements dot product (DP) computations [29].

(a) (b)

Attribute Conventional
system DIMA

word storage
pattern row major column major

column mux ratio L : 1 1 : 1
of fetched

words per access NCOL/(LB) NCOL

BL swing / LSB
(∆VBL) 250-300 mV 5-30 mV

of rows per
access 1 M

WL driver fixed pulse
width

pulse width /
amp. modulated

(c)

Fig. 2. Comparison of: (a) the digital architecture with a L : 1 column mux
and sense amplifiers (SAs), (b) DIMA [16], [24], [26] with a functional read
(FR) with BL processors (BLPs), and a cross BLP (CBLP), and (c) a summary
of the differences. The BCs marked in gray in (a) and (b) are accessed at the
same time per precharge/read cycle. Analog domain is shown in red. Note:
certain DIMA variants require per-column ADCs [64].

D. DIMA Processing Stages

A detailed description of each DIMA processing stage is
presented next.
D.1 Functional Read (FR): This stage generates a BL voltage
drop ∆VBL (or current flow) proportional to the weighted sum
of the column stored bits. Consider FR of M rows using pulse-
width modulation (PWM) [16] of the wordline (WL) pulse
widths Ti (i ∈ [0,M − 1]) as shown in Fig. 3(b) [16]. The
total BL voltage drop ∆VBL(W) can be represented as follows:

∆VBL =

∑M−1
i=0 ∆Qi
CBL

=
VPRE

CBL

M−1∑
i=0

wiTi
Ri

(1)

where ∆Qi is the charge drawn by the pull-down transistor of
the i-th BC in the column. The VPRE is the BL precharge
voltage, CBL is the BL capacitance, wi is the data stored
in the i-th BC in the column, and Ri is its discharge path
resistance. Equation (1) shows that the BL voltage discharge
∆VBL is a DP between {wi} and {Ti} if Ri = RBL, i.e.,
the discharge currents in the M BCs are identical. Note that

4

WL(B-1)

w(B-1)

w(B-2)

BL

VPRE Prech

Standard 6T
SRAM bitcell

WL
WL

w(B-1)

BLB

WL(B-2)

w(B-1)

CBLCBL

(a)

(b)

Fig. 3. The functional read (FR) operation with M = B, which is the
bit precision of W : (a) BC column structure, and (b) ideal waveform using
pulse-width modulated (PWM) WL enabling signals during a B = 4-bit
word W = 1111b′ (red) and W = 0110b′ (blue) read-out. The WL pulses
are shown non-overlapped for clarity, but can overlap in practice [16].

pulse amplitude modulation (PAM) based FR has also been
employed by modulating the WL pulse amplitudes VWLs [25].
The use of PAM-based FR is limited by the available voltage
headroom and read upset considerations.

The FR stage can be employed to realize at least two classes
of functions:

1) Multi-bit digital-to-analog (D/A) conversion: By em-
ploying the binary-weighted pulse widths Ti = 2iT0,
where T0 is the LSB, and storing a B-bit W (W ≡
{w0, w1, ..., wB−1}) in a column-major format (see
Fig. 3(a)), (1) is transformed into:

∆VBL(W) = ∆Vlsb

B−1∑
i=0

2iwi = ∆VlsbW (2)

where ∆Vlsb = VPRET0

RBLCBL
. Thus, the FR performs a highly

efficient D/A conversion to provide a multi-bit data per
BL column. It was shown that 5-bit of data can be D/A
converted comfortably without losing accuracy [26]. In
contrast, conventional SRAM reads fetch a single bit per
BL in a read cycle.

2) Integrated data read and SD computation: Equation (2)
shows that a simultaneous application of FR to two sets
of B rows storing W and X , respectively, generates a
BL discharge voltage ∆VBL proportional to X + W as
shown below:

∆VBL(W,X) = ∆Vlsb(W +X) (3)

(a) (b)

Fig. 4. BL processing (BLP): (a) charge redistribution-based multiplication
with B = 4 [66], and (b) absolute difference (|W −X|), where W and X
are pre-stored in the same BC column [16].

Similarly, a simultaneous reading of W and X generates
a ∆VBL and ∆VBLB proportional to W −X and X−W ,
respectively.

D.2 BL Processing (BLP): The BLP implements additional
SD computations if required. It resides in the periphery of
the BCA pitch-matched to its column (see Fig. 2(b)). The
NCOL BLPs in Fig. 2(a) accept two input operands: 1) the
BL voltage discharge ∆VBL(W) generated by the FR stage;
and 2) an externally provided word X , to generate an output
voltage VB(W,X). The column pitch-matching of the BLP
layout makes the BLP stage a massively parallel analog SIMD
processor.

The BLP can realize the product W · X of two multi-bit
operands W and X which is pervasively employed in the
vector DP computation (

∑N
i=1WiXi). A charge redistribution-

based mixed-signal multiplier (Fig. 4(a)) accepts an analog
inputs ∆VBL(W) (FR stage output) and a digital input X ,
whose B bits xis control the φ2,i switches, to generate the
output voltage ∆VB(W,X) = VPRE − VB(W,X) as follows:
[26]:

∆VB(W,X) = (0.5)BX∆VBL(W) = (0.5)B∆VlsbWX (4)

Therefore, ∆VB(W,X) is proportional to the product WX .
Note that the BLP multiplier needs to employ unit-sized
capacitors rather than ones with binary-scaled sizes as in [67],
due to the tight column pitch constraints.
D.3 Integrated FR and BLP Operation: It is also possible
to integrate the FR and BLP operations to realize more
sophisticated functions such as a multi-bit absolute difference
|W − X|, which are widely employed for computing the
Manhattan distance (MD) (

∑N
i=1 |Wi − Xi|) between two

vectors. The absolute difference |W −X| can be represented
as [16]:

|W −X| = max(W −X,X −W) (5)

Equation (3) suggests that storing W and the one’s comple-
ment X in two sets of B rows within the same column and

5

Fig. 5. Cross BL processing (CBLP) [26].

simultaneously applying FR to the 2B rows will generate a
voltage discharge on the BL and BLB as follows:

∆VBL(W,X) = ∆Vlsb(W +X) (6)

∆VBLB(X,W) = ∆Vlsb(X +W) (7)

A differential comparator and a multiplexer per column
processes these voltage discharges to realize a local compare-
select operation to compute max(VBL, VBLB) and thereby re-
alize (5) (see Fig. 4(b)).
D.4 Cross BL Processing (CBLP): The CBLP (Fig. 5) samples
the BLP output voltage (VB(W,X)) on the sampling capacitors
CS in each BL column by pulsing the φ1 switches. The sizes
of capacitors CS in each column can be either identical or
different. For example, in [26], the capacitors are scaled in a
ratio of 16 : 1 in order to combine the BLP outputs of two
adjacent columns to obtain an 8-bit BLP results from two 4-bit
BLPs.

The CBLP output VC is generated in one shot by closing
the switches φ2 with an (optional) amplifier with voltage
gain G. Finally, the CBLP output VC is digitized by the
ADC for further processing, e.g., by the RDL or by the next
DIMA bank. The RDL performs simple slicing/thresholding
operations digitally such as sign, tanh, max, min, sigmoid,
ReLU, and majority voting.

In a single-ADC DIMA [26], the ADC and RDL process a
single scalar value (VC) once after processing a large number
(e.g., > 1024) of words via the application of FR, BLP and
CBLP processing steps. Therefore, the energy overhead of
ADC and RDL is negligible compared to the BCA precharge
and computation energy. However, as mentioned earlier, cer-
tain DIMA variants employ per-column ADCs to implement
the BLP and CBLP in the digital domain. The energy and
delay requirements on such ADCs and the resulting overheads
will naturally be higher than the single-ADC DIMAs but will
remain much smaller, e.g., < 8% in [61], than that of the
BCA.

E. Energy and Delay Benefits

In this section, we provide a justification for DIMA’s delay
and energy reduction over an equivalent digital architecture via
the use of simple circuit models. Specifically, we estimate the
normalized delay (τd) and the normalized energy (εe) which
are defined as DIMA’s delay and energy costs, respectively,
normalized w.r.t. that of an equivalent digital architecture
(Fig. 2(a)).

In order to estimate DIMA’s normalized delay, we assume
that both architectures need to read B bits in order to compute

a function. Since the number of bits fetched per read cycle
in a digital architecture is limited to NCOL/L compared to
NCOLB in DIMA, DIMA requires LB× (where LB is a
product of column mux ratio L and the number of bits B
fetched for computation) fewer read cycles to fetch the B
bits. However, DIMA’s cycle time (TDIMA) can be greater than
that (Tdigital) of its digital counterpart since TDIMA includes
both data read and compute delays executed via the FR, BLP,
and CBLP stages. Making the worst-case assumption that the
DIMA processing stages are executed sequentially, but without
considering the computational delay required by the digital
architecture, DIMA’s normalized delay τd to read B bits is as
follows:

τd = LB

[
Tdigital

TDIMA

]
=
LB

γ
(8)

where TDIMA and Tdigital are the cycle times of DIMA and
the digital system, respectively. The normalized delay γ =
TDIMA/Tdigital ranges from 3 to 6 in 65 nm CMOS process
depending on the type of BLP function. It has been shown that
DIMA can enable B ≤ 6 [26] with B = 4 being implemented
reliably. Therefore, τd = 5× to 21× can be achieved in silicon
[26] with typical values of B = 4, L = 4 to 16, γ = 3 and
τd = 5.3.

Next, we estimate the DIMA’s normalized energy consump-
tion εd. The precharge energy of the large BL capacitances
CBL and the leakage energy caused by subthreshold conduction
dominate the dynamic and static energy consumption, respec-
tively, in the SRAM BCA. Thus, the energy consumption of
the digital system and DIMA to fetch B bits is given by:

Edigital = LBCBL∆VBL,maxVPRE + Elk-digital (9)

EDIMA = βCBL∆VBL,maxVPRE +
Elk-digital

τd
(10)

where Elk-digital is the leakage energy in the digital system, and
1 ≤ β < 2 is an empirical factor that accounts for DIMA’s
FR stage being either a B-bit or a 2B-bit accesses per column
when integrating FR with a SD computation [26]. DIMA can
be placed into a standby mode earlier than the digital system
due to its higher throughput, which in turn reduces the leakage
energy by a factor of τd.

As the first term in (9) and (10) dominates during active
(inference) mode, the ratio between these two indicates the
energy saving factor εe, given by:

εe =
EDIMA

Edigital
=
LB

β
(11)

where εe = 8×-to-32× can be achieved easily with typical
values of B = 4, L = 4, 8, 16 and β = 2.

DIMA’s EDP reduction over its digital counterpart can be
represented as follows from (8) and (11):

ρedp = εeτd =
(LB)2

βγ
(12)

where ρedp lies in the range 21×-to-1365×, of which ρedp =
100× has been demonstrated via silicon prototypes [28]. This
indicates that EDP gains by DIMA can be further increased.
In addition to the savings in memory read energy, DIMA

6

Fig. 6. Energy trends in DIMA vs. conventional digital system from (9)
and (10) with respect to NROW, where L = 4, B = 4, β = 1, N = 128,
and ∆VBL-B = ∆VBL,max/B for DIMA and ∆VBL,max for the digital system.
[64].

also achieves roughly 10× lower computational energy as
compared to the digital architecture.

The energy models (9)-(10) correlate well with measured
results from silicon prototype [26], as shown in Fig. 6, with
a modeling error of 11% when NROW = 512. Figure 6 also
indicates that the energy consumption for both DIMA and
the digital architecture increases linearly with NROW (due to
the increased BL capacitance CBL) and with the BL swing
(∆VBL-B) due to the increased precharge energy. However,
DIMA realizes its huge EDP gains by harnessing its precharge
energy to compute functions of B × NCOL bits vs. simply
accessing NCOL/L bits as done by the digital architecture.
The price for DIMA’s EDP gain is the accompanying loss in
its compute SNR. The next section discusses design methods
to manage this SNR loss in order to minimize its impact on
its inference accuracy.

III. DIMA’S ROBUSTNESS

As DIMA exploits low-swing/low compute SNR analog
processing under stringent pitch-matching constraints, it is
subject to various circuit non-idealities. However, as compared
to traditional analog circuits, the use of DIMA in inference
applications combined with its unique architectural data-flow,
affords it a certain degree of in-built robustness to circuit non-
idealities. This section first presents design guidelines and
techniques for minimizing the impact of circuit non-idealities
on the compute SNR, and then provides a systems rationale
for DIMA’s in-built robustness to those non-idealities.

A. Design Guidelines for Functional Read (FR)

The BL voltage discharge expression in (2) assumes the
following conditions:
• Condition 1: Ti � RiCBL.
• Condition 2: RBL is constant over VBL, i.e., bias-invariant

discharge resistance.
• Condition 3: Ri = RBL, i.e., spatially-invariant discharge

resistance.

• Condition 4: Ti = 2iT0.
Though fully meeting all of the above conditions can be

challenging, in practice, these can be approached quite easily.
For example, Condition 1 can be achieved by lowering the
amplitude VWL of WL enabling pulse to increase Ri. Doing
so also helps realize Condition 2 by guaranteeing the access
transistors to operate in saturation region across a wide range
of VBL. However, an excessive lowering of VWL increases the
impact of spatial threshold voltage mismatch of BCs on the
cell currents since the access transistors will be operating in
the near-threshold voltage regime. For a typical 65 nm CMOS
process with VDD = 1 V and Vth = 0.4 V, choosing 0.55 V ≤
VWL ≤ 0.65 V has been found to be a reasonable compromise.
Note that Condition 3 gets relaxed by the CBLP stage, where
the aggregation process averages out the variations in ∆VBL as
shown in Section III-C. Similarly, by choosing T0 to be large
enough, e.g., 250 ps for a 512× 256 BCA, makes it possible
to meet Condition 4. This value of T0 ensures that the finite
rise and fall times of VWL is a small fraction of Ti.

The above guidelines enable the realization of a sufficiently
linear FR operation for B ≤ 5. For B > 5, the method of sub-
ranged read [26] can be employed whereby B/2 MSBs and the
B/2 LSBs are stored in adjacent BCA columns. The generated
BL discharge voltages of those columns by FR process are
then merged by weighing the MSB column by factor of 2

B
2 ×

more than the LSB column.

B. Design Guidelines for BLP and CBLP

Computation of the BLP (Fig. 4(b)) and aggregation in the
CBLP (Fig. 5) are processed by charge sharing mechanism.
These circuits suffer from the following noise sources: (1)
thermal noise, (2) charge-injection noise, and (3) coupling
noise. The capacitors in those blocks need to be sized to guar-
antee that the error magnitude from thermal noise and charge-
injection is smaller than ∆Vlsb, the BL voltage discharge
corresponding to one LSB. For example, realizing an 8-bit
precision with ∆VBL,max = 300 mV results in 1 mV resolution.
Therefore, the thermal noise constraint (

√
KT/C < 0.5Vres)

requires C > 17 fF at T = 300 K, e.g., C = 25 fF was used
in [26] to provide a sufficient margin. The layouts of BLP and
CBLP blocks also need to be carefully designed with proper
shielding to minimize coupling noise between the full-swing
digital signals and low-swing analog nodes in the BLP and
CBLP.

C. DIMA’s Algorithmic Source of Robustness

DIMA’s intrinsic analog nature raises concerns regarding
the impact of non-ideal circuit behavior, e.g., PVT variations,
on its inference accuracy. Design guidelines provided in Sec-
tions III-A and III-B can help mitigate the impact of such
non-ideal circuit behavior. Surprisingly, it turns out that DIMA
displays an inherent robustness to process variations due to
its high-dimensional vector processing combined with the
intrinsic error-tolerance of ML algorithms. This section em-
ploys a Shannon-inspired perspective [68] to describe DIMA’s
algorithmic source of robustness whereby its highly integrated
processes of memory read and inference computations are

7

(a)

(b)

Fig. 7. A Shannon-inspired view of: (a) the digital architecture, and (b)
DIMA, where red boxes are hard-decision blocks [26].

viewed as being equivalent to the process of reliable data
transfer over a (noisy) communication channel (see Fig. 7).

Under the Shannon-inspired perspective (Fig. 7), both
DIMA and the conventional architectures read data from
memory and compute inference functions with the fetched
data. The realizable accuracy of the inference functions being
computed, e.g., misclassification rate, will depend on how
noise sources including PVT variations are controlled or com-
pensated for. The digital architecture in Fig. 7(a) minimizes
the impact of non-ideal circuit behavior on its accuracy for
the inference task by separating the processes of data read and
computation, and by ensuring that each of those processes is
deterministic, i.e., high compute SNR. The cost of this strategy
is a high EDP. In contrast, though DIMA (Fig. 7(b)) trades-off
its compute SNR to obtain enormous EDP gains, it is able
to preserve its decision accuracy using three principles: 1)
delayed decision, 2) significance-based swing allocation, and
3) massive aggregation as described next.
C.1 Delayed Decision: Delayed decision making implies that
no hard decisions are made until it is absolutely necessary, i.e.,
mandated by the ML algorithm, and occurs at the final stage
(Fig. 7(b)). DIMA realizes delayed decision by replacing SAs,
which make early hard binary decisions, with analog BLPs
implementing scalar operations. In this way, DIMA avoids the
loss of information associated with making a hard decision
right after noisy BL discharge. Instead of converting BLP
outputs into the digital domain via a bank of ADCs, DIMA
instead aggregates them via a switched capacitor network in
the CBLP stage followed by an ADC. In the ideal scenario,
this ADC would generate the final decision based on a scalar
CBLP output, e.g., a 3-b output for an 8-way classifier. Thus,
DIMA exploits the data compression inherent in the feature
extraction functionality of ML algorithms to alleviate both the
precision requirements and the sampling rate of the ADC.

The difference between early and delayed decision-making
can be observed in Fig. 8(a) for a binary classifier where an

(a)

(b)

Fig. 8. Early vs. delayed decision scenarios: (a) functional flow, and (b)
misclassification rate pe vs. compute SNR [17].

input x ∈ {1,−1} and its priors P (X = 1) = P (X =
−1) = 0.5 with additive noise sources η1, η2 ∼ N (0, σ2

n),
which are independent and identically distributed. Assuming
zero thresholds, the misclassification rate pe = Pr{x 6= x̂}
for early (digital architecture) and delayed decision (DIMA)
scenarios can be derived as [17]:

pe =

{
2Q(1

σn
)[1−Q(1

σn
)] (early decision)

Q(1√
2σn

) (delayed decision)
(13)

where Q() is the tail integral of the standard normal N (0, σ2
n).

The plot of (13) in Fig. 8(b) shows that delayed decision incurs
a lower pe achieving higher accuracy than early decision,
but at low compute SNRs. This observation indicates that
DIMA compensates for its low compute SNR by avoiding
hard decisions early in the processing chain.
C.2 Significance-based Swing Allocation: This principle states
that energy, and hence signal (e.g., voltage or current) swing,
needs to be allocated in proportion to the information content
in the data being read/processed. For example, DIMA’s FR
stage (Fig. 3(b)) assigns BL voltage swings based on the
significance of the bit, e.g., with MSBs allocated more swing
than the LSBs. When B bits need to be read within a fixed
value of the total swing ∆VBL, the swing ∆Vn for the nth bit
position is represented as follows:

∆Vn =

{
∆VBL
B (significance-based)

∆VBL2n−1

(2B−1)
(conventional)

(14)

It can be shown [17] that significance-based swing allocation
assigns approximately 2× higher and 3.8× less swing when
B = 4 for the MSB and LSB, respectively, compared to
the conventional uniform swing assignment. In that manner,
DIMA budgets a limited resource (the BL voltage swing) more
efficiently with minimum accuracy degradation.

8

TABLE I
TYPICAL DATA-FLOW OF COMMONLY USED ML ALGORITHMS [69].

f(D(w,x))
Inner loop kernel

f()
D(w,x) =∑N

i=1 d(Wi, Xi)

Support vector machine
∑N

i=1WiXi sign
Template matching (L1)

∑N
i=1 |Wi −Xi| min

Template matching (L2)
∑N

i=1(Wi−Xi)
2 min

Deep neural network
∑N

i=1WiXi sigmoid
Feature extraction (PCA)

∑N
i=1WiXi −−

k-Nearest Neighbor (L1)
∑N

i=1 |Wi −Xi| majority voting
k-Nearest Neighbor (L2)

∑N
i=1(Wi−Xi)

2 majority voting
Matched filter

∑N
i=1WiXi min

Linear regression

∑N
i=1Wi accumulate∑N
i=1W

2
i accumulate∑N

i=1WiXi accumulate

C.3 Massive Aggregation: The CBLP stage (Fig. 7(b)) aver-
ages out the noise contributions from the BLs via the charge-
sharing mechanism by reducing the standard deviation of the
noise at the output by a factor of

√
N , assuming that the N

noise sources are uncorrelated zero-mean random variables.
Both η1 and η2 are averaged out by the CBLP stage, boosting
the SNR right before the final hard decision (thresholding)
when it matters most. There is no such effect in a digital
system which aggregates right after the first hard decision in
the SA.

Therefore, we see that DIMA’s unique architectural data-
flow combined with the intrinsic robustness of inference
algorithms to computational errors provides for an in-built
algorithmic robustness to noise and PVT variations.

IV. MULTI-FUNCTION AND PROGRAMMABLE DIMA

In spite of its analog nature, DIMA is able to realize a vari-
ety of ML algorithms on the same architecture while achieve
significant reduction in the system-level EDP. A key reason
for DIMA’s functional versatility lies in the excellent match
between its architectural data-flow and the algorithmic data-
flow of various ML algorithms. This section first identifies
the commonalities in a variety of ML algorithms and relates
it to DIMA’s architectural data-flow. Then, two case studies
are presented to demonstrate DIMA’s functional versatility:
(1) the design of a multi-functional DIMA IC prototype in a
65 nm process [26], [70], and (2) PROMISE: a DIMA-based
accelerator for ML algorithms [69].

A. Data-flow of ML Algorithms and DIMA

ML algorithms require massive vector distance (VD) com-
putations D(w,x) between a weight vector w and an input
vector x [71]. Widely employed VD computations include
the Hamming distance, L1 distance (Manhattan distance), L2
distance (Euclidean distance), and dot product for many ML
algorithms such as the deep neural network (DNN), template
matching, k-nearest neighbor (k-NN), matched filter (MF), and
support vector machine (SVM) as listed in Table I.

The VD computation dominates the latency and energy
consumption in those ML algorithms. As it turns out, much of

(a)

Technology 65 nm CMOS
Die dimension 1.2 mm×1.2 mm

SRAM Capacity 16 kB (512× 256 BCs)
BC dimension 2.1µm×0.9 µm

CTRL operating freq 1 GHz
Supply voltage (V) CTRL: 0.85, CORE: 1

(b)

Fig. 9. The multi-functional DIMA IC [26]: (a) silicon prototype micrograph,
and (b) chip summary.

DIMA’s compute pipeline (FR→BLP→CBLP→ADC+RDL)
is well-matched to the data-flow of VD computation, e.g.,
the VD is computed by first processing N SD computations
d(Wi, Xi) (FR→BLP) and then aggregating (→CBLP) to
generate the final scalar VD D(w,x) =

∑N
i=1 d(Wi, Xi).

Finally, the VD passes through a simple thresholding/slicing
function f() (→ADC+RDL), such as ReLu, tanh, or sigmoid,
to generate the final decision y. There are cases where VDs
between a single input vector x and many weight vectors w
needs to be computed. In such scenarios, DIMA’s advantage
over the digital architecture will proportionally increase.

B. The Multi-Functional DIMA IC

The multi-functional DIMA prototype (Fig. 9) [26] in a
65 nm CMOS process realizes four tasks: 1) handwritten digit
recognition using k-NN; 2) face recognition using TM; 3)
face detection using SVM; and 4) gun shot detection using
MF [26]. The prototype enables two VD computation modes:
1) dot product (DP) mode for SVM and MF based on the
charge-redistribution multiplier in Fig. 4(a), and 2) Mahattan
distance (MD) mode for k-NN and TM between the stored
data (W) and the input data (X) with the absolute difference
computation in Fig. 4(b).
B.1 Architecture and Operation: The multi-functional DIMA
architecture (Fig. 10) comprises a CORE, an input register to
stream in the input pattern X , and a digital controller (CTRL).
The CORE consists of the conventional read/write circuitry, a
512×256 BCA, four 8-bit single-ramp ADCs [72], BLP, and
CBLP blocks. The RDL is embedded in the CTRL. A 4 (=

9

Fig. 10. The multi-functional DIMA IC architecture [26].

L) : 1 column-mux is employed to maximize the throughput
of the standard SRAM read. An 8-bit W and X are used to
achieve inference accuracy close (< 1% loss) to that of 8-bit
fixed-point digital accuracy [1], [57], [73]. A reconfiguration
word (RCFG) configures the operation mode of the chip. The
CTRL provides the CORE with control signals with a 1 ns
time resolution via a 1 GHz master clock (CLK).

The DIMA circuitry takes 19% of the CORE area, with 10%
and 9% for the DP and MD modes, respectively. Realizing FR
functionality does not incur an area penalty, as pre-existing
WL drivers are repurposed.

The FR, BLP, and CBLP stages are executed sequentially
to generate the outputs VBL, VB, and VC, respectively. Then,
the CBLP output VC is sampled and provided as input to
the single-ramp ADC. Next, the RDL block further processes
the ADC output for thresholding operation. This four-stage
processing is iterated until the ML algorithm is fully executed.
B.2 Measured Results: This section describes the measured
energy, delay, and accuracy from the silicon prototype.
• Accuracy of FR: Figure 11(a) shows the measured accuracy
of FR operation for 8-bit word W obtained via the sub-ranged
read operation achieving an integral non-linearity (INL) <
0.87 LSB. The variation in ∆VBL was also measured (see
Fig. 11(b)) by accessing the stored data with the same value
from multiple locations in the BCA. It was found that the
variation in ∆VC has a σ/µ of only 1.1% because of the
averaging effect of the CBLP stage.
• Accuracy of CORE output: Figure 12 shows the CORE
output including all the analog processing chain in the FR,
BLP and CBLP stages. The measured error magnitude from an
ideal linear plot was found to be less than 18 mV with a mean
of 4 mV over all combinations of (W ,X). These deterministic
errors can be compensated via an off-line re-training process
in the presence of these errors.
• Task-level Energy, Delay, and Accuracy: The CORE
decision energy and decision accuracy were measured for
two tasks: 1) face detection (binary class) with SVM, and 2)
face recognition (64-class) with TM. The inference accuracy

(a)

(b)

Fig. 11. FR accuracy of 8-bit W measured from silicon prototype: (a) BL
voltage drop ∆VBL with sub-ranged read, where WM = 23w7 + 22w6 +
2w5 +w4 and WL = 23w3 +22w2 +2w1 +w0, and (b) spatial variations on
∆VC across the entire BCA, accessing via FR, and subsequently aggregating
via CBLP [26].

Fig. 12. Measured CORE analog output in the DP mode ∆VC (∝
∑
WiXi

with 8-bit operands W and X , where the same data W and X are stored in
all the columns [26].

(Pdet) is measured as the ratio of the number of correctly
classified queries to the total number of queries. Figure 13(a)
indicates that CORE energy is reduced with smaller voltage
swing ∆Vlsb, but at the degraded detection accuracy (Pdet).
Figure 13(b) clearly shows the trade-off between detection
accuracy vs. CORE energy.
• Benefits over digital architecture: The benefit of DIMA
over the conventional digital system (Conv) is validated by
measuring the silicon prototype. The reference system consists
of an SRAM with the same BCA as the one in the silicon pro-

10

(a) (b)

Fig. 13. Trade-offs between: (a) BL swing per LSB (∆Vlsb) vs. energy and probability of correct detection (Pdet), and (b) energy vs. Pdet, obtained from
silicon prototype [26] measurements.

Fig. 14. CORE energy per pixel for DIMA (†post-layout simulations,
‡measured) and a conventional digital system (Conv) (∗SRAM energy mea-
sured from the prototype and digital computation energy estimated from post-
layout simulations) [26].

totype and digital logic blocks synthesized for the DP and TM
modes separately. The energy and delay costs of the SRAM
read operation in the reference architecture are estimated by
measuring the DIMA prototype during the normal read mode
whereas those of the synthesized logic block were estimated
from post-layout simulations. Figure 14 shows the energy
breakdowns for the DIMA and the conventional digital system
estimated from post layout simulations, and measured from
prototype IC. DIMA achieves 10× and 5.3× energy savings
in the DP and MD modes, respectively, which are close to the
estimated benefits from the post layout simulations. DIMA
also achieves 5.8× and 5.3× throughput improvement in the
MD mode (TM and k-NN) and DP mode tasks (SVM and
MF), respectively, due to massive parallelism (128 8-bit words
per access) compared to the normal SRAM mode (8 8-bit
words per access). Therefore, DIMA achieves 32× and 53×
EDP gains in the MD and DP modes, respectively.

Fig. 15. The PROMISE multi-bank configuration to enable scalability [69].

C. PROMISE: A DIMA-based Accelerator

While it is clear that DIMA is highly effective in reducing
the system-level EDP of ML algorithms, it does beg the
question: Can DIMA be made programmable while preserving
its enormous EDP gains? To answer this question, this section
describes a DIMA-based accelerator called PROMISE [69]
which realizes a high degree of programmability without a
noticeable loss in efficiency. PROMISE also enables software
control over DIMA’s intrinsic energy-vs-accuracy tradeoff via
its instruction set.
C.1 PROMISE Architecture: PROMISE is built on the DIMA
core (Fig. 10 [26]) with four processing stages (S1) aREAD,
(S2) aSD, (S3) aVD, and (S4) ADC and TH, which correspond
to the FR, BLP & CBLP, ADC, and RDL stages described in
Section II-D.

PROMISE includes digital blocks CTRL and X-REG to
provide the programmability. A PROMISE bank consists of
512 × 256 (= NROW × NCOL) BCA similar to the multi-
functional DIMA in Fig. 10, which reads out a 128-element
vector at a time and seamlessly converts it to corresponding
analog values. The aREAD stage also supports the optional
element-wise addition or subtraction with an 128-element
input operand vector X .

The aSD and aVD stages process the 128 analog values
from the aREAD stage at a time, followed by the ADC stage.
The digitization in the ADC stage also prevents the noise

11

(a)

(b)

Fig. 16. PROMISE instruction set: (a) instruction format, and (b) operations
in each Class [69].

accumulation from excessively long analog processing chain.
TH supports not only the decision functions f() in Table I, but
also aggregates partial sums when the vector length N > 128.
CTRL generates the enable signals for all the other blocks
based on a given instruction to make DIMA a programmable
mixed-signal accelerator. Finally, X-REG holds streamed-in
eight 128-element input vectors Xs.

Figure 15 shows an 8-bank PROMISE with two PAGEs,
where four banks are employed per page. Therefore, long
(>128) vectors can be processed in parallel fashion by dis-
tributing the vector across multiple banks. After in-memory
processing, digitization via ADCs is followed by aggregation
of the resulting partial sums in the digital domain.
C.2 PROMISE Instruction Set: The PROMISE ISA to enable
programmable mixed-signal accelerator is described next:
• Instruction Format: PROMISE ISA is based on a wide-
word macro instruction format, Task, which consists of
multiple operations. This is similar to a very-large instruction
word (VLIW) ISAs except that the operations are sequen-
tially processed due to DIMA’s analog compute pipeline
rather than parallel as in VLIW architectures. PROMISE ISA
(Fig. 16(a)) includes four Class fields, which correspond to
four pipelined stages of PROMISE with three other fields,
OP_PARAM, RPT_NUM, and MULTI_BANK for further con-
figurations.
• Operating Parameter Field: OP_PARAM (33 bits) con-
figures operating parameters, e.g., address, to support flex-
ible programmability. The SWING parameter also controls
BL swing ∆VBL, e.g., 5 mV/LSB - 30 mV/LSB with eight
different levels to exploit the trade-off between accuracy vs.
energy efficiency.
• Class Fields: Class-1 includes six possible memory
operations including READ, WRITE, or aREAD for a standard
SRAM read, and write, or analog read operation, respectively.
aADD (aSUB) processes one aREAD and an element-wise
addition (subtraction) in the analog domain with operand
W read from the BCA and input vector X from X-REG.
Class-2 chooses one of five possible aSD operations

Fig. 17. PROMISE speed-up and energy savings (with SWING = 111) over
CONV [69].

such as compare, absolute, square, sign_mult and
unsign_mult and the following optional aVD operation for
the aggregation. Class-3 controls whether an ADC operation
is performed or not, and Class-4 specifies one of seven
TH operations such as ReLu, mean, max, min, sigmoid,
accumulation, and threshold.
• Loop Control Field: RPT_NUM controls how many times
the Task is iterated to process the distance computation
D(wj ,x) with multiple wjs.
• Multiple Bank Control Field: MULTI_BANK defines the
number of banks used to distribute long (>128) vectors
for parallel processing. These vector elements need to be
distributed within the same row across multiple banks to be
processed in parallel. The output of a Class-4 operation
can be transferred to the X-REG or TH block of any bank by
controlling the destination DES in OP_PARAM. For large-scale
applications, where the vectors are too long to fit into multiple
banks, those vectors can be sequentially processed by setting
RPT_NUM and other parameters.
C.3 Evaluation: Commonly employed ML algorithms such as
SVM, linear regression, principle component analysis (PCA),
TM with L1 and L2 distances, and k-NN [69] were mapped
to PROMISE including three different DNN models with
differing levels of network size and complexity. The 8-bit
precision is employed for PROMISE to maintain the accuracy
close to floating-point implementations [1], [57], [73], [74].
On the other hand, the baseline digital architecture (CONV)
includes conventional SRAM and fixed-point computational
logic synthesized for the specific algorithm with the minimum
bit precision required per benchmark.

Figure 17 shows that PROMISE achieves 1.4 − 3.4×
throughput benefits as compared to CONV across the bench-
marks. It is also shown that PROMISE achieves energy savings
of 3.4 − 5.5× compared to CONV, leading to 4.7 − 12.6×
EDP reductions. These benefits are mainly achieved from
aREAD (Class-1) and aSD/aVD (Class-2) stages with
low-voltage swing mixed-signal processing. Despite the in-
creased CTRL complexity for the programmability, its energy
is <10% of the total energy demonstrating that the program-
ability overhead of PROMISE is negligible.

12

Fig. 18. Spatial variations (σ/µ)∆VBLB and decision accuracy with respect
to ∆VBL,max measured from silicon prototype across 30 randomly chosen
4-row groups on [28].

V. ENHANCING DIMA’S EFFICIENCY VIA ERROR
COMPENSATION

Sections III and IV have shown that the impact of DIMA’s
non-ideal analog behavior can be overcome to a great extent
via a combination of: 1) good circuit design guidelines;
2) its unique Shannon-inspired architectural attributes such
as a) delayed-decision making, b) significance-based swing
allocation, and c) SNR boosting via aggregation; and 3) the
intrinsic tolerance of ML algorithms to computational errors.
In this process, DIMA realizations [26] have demonstrated
both excellent robustness to PVT variations, and substantial
EDP gains over their digital counterparts.

Nevertheless, if DIMA’s EDP gains are to be enhanced even
further, one will need to lower the compute SNR more aggres-
sively, e.g., per (10) DIMA’s energy consumption reduces with
the BL voltage discharge ∆VBL. However, doing so leads to
an increase in the variations observed in ∆VBL and hence to a
loss in accuracy as seen in Fig. 18, where ∆VBL is controlled
by WL enabling voltage VWL. Indeed, reducing the maximum
BL swing ∆VBL,max increases the normalized variation (σ/µ)
in ∆VBL and a corresponding increase in the misclassification
rate pe of a SVM algorithm implemented in DIMA [28].

In order to address this loss in inference accuracy, one
will need to employ algorithmic techniques since we can
safely assume that the design guidelines and the intrinsic error
tolerance of ML algorithms would have been exhausted at this
point. This section describes two such techniques: a) the use
of on-chip learning [28], and b) the use of ensemble methods
[27].

A. Error Compensation via On-chip Learning

Since ML algorithms employ data-driven training methods
to learn sufficient statistics for accurate inference, it is possible
to harness the power of such methods to realize an on-chip
learning set-up whereby the training method adapts to both
data statistics and the statistics of non-ideal circuit behavior
such as those due to process variations. Such on-device
training infrastructure would be critical for other reasons
as well: 1) to enable always-ON Edge devices to adapt to
changing environmental characteristics that impact the input
data statistics and noise, 2) for privacy reasons related to the

Fig. 19. SGD-SVM DIMA IC chip architecture showing the IM-CORE,
trainer and CTRL, where analog signals are marked in RED [28].

Fig. 20. Chip micrograph of DIMA IC with an on-chip trainer [28].

sensitivity of locally sensed data, e.g., wearable biomedical
devices, and 3) to track the temporal changes in electrical
device characteristics (with temperature, and aging).

We illustrate the efficacy of on-chip training via the case
study of a DIMA IC prototype in a 65 nm CMOS process [59]
that employs an stochastic gradient descent (SGD)-based on-
chip training to implement a robust SVM classifier. The pro-
totype IC implements the feedforward computations in DIMA
and feedback computations using on-chip digital circuitry. This
prototype demonstrates that on-chip training not only adapts
to chip-specific spatial variations in the BCA but also to data
statistics, thereby further enhancing DIMA’s energy efficiency.
A.1 Systems Rationale: The non-idealities in DIMA are dom-
inated by spatial transistor threshold voltage variations, dis-
charge path non-linearity, and the finite transition times of the
WL pulses. The effects of these non-idealities do not change
over time. As a result, even though the weights ws are stored
in the BCA, the FR outputs w′ = H(w), where H(·) is a
function that accounts for the impact of spatial variations, and
is chip-specific, unknown, and static after fabrication. It can
be shown [28] that the SGD algorithm will converge to an
optimal solution when the feed-forward path implemented on

13

(a) (b) (c)

Fig. 21. Learning curves measured from silicon prototype shows robustness to: (a) process variations, (b) variations in input statistics with ∆VBL,max =
560 mV, and (c) classification accuracy with the weights trained on a different die. A batch size N = 64 and a regularization factor λ = 2−4 is used [28].

DIMA computes w′ = H(w) provided H(·) is monotonic –
a condition that is easily satisfied by DIMA since it reads a
weighted function of the bits of W instead of the bits directly.
Therefore, on-chip learning can enable accurate inference in
the presence of die-specific variations by learning both the
optimal weights (w) as well as the die-specific variations
(H(·)).

The on-chip training can be also employed in a conventional
digital system to compensate PVT variations with reduced
∆VBL. But, this approach is less effective for the digital system
because the variations can cause SA bit errors, including MSB
errors, which will be catastrophic, i.e., H(·) is non-monotonic
in w. This observation has been confirmed via measurements
in [59].
A.2 Architecture and Circuit Implementation: The architecture
of the prototype IC in Fig. 19 is based on [26] (see Fig. 9)
and includes following blocks: (a) the in-memory CORE (IM-
CORE) for in-memory computation; (b) the SRAM peripheral
circuitry for standard read/write operations; (c) decision block;
(d) the digital trainer; and (e) a digital controller (CTRL).
There are following operation modes: 1) standard SRAM
READ/WRITE mode; 2) in-memory inference mode; and 3)
on-chip learning mode. The in-memory inference function is
given by:

wTxk + b
ŷk=+1

≷
ŷk=−1

0, (15)

where ŷk is the decision (label) for the input vector xk. The
weight vector w, and a scalar bias b are parameters of the SVM
algorithm. The IM-CORE block implements the dot-product
operations, and a set of comparators and ADC in the decision
block generates the estimated class label ŷk.

The training algorithm is a batch SGD-SVM implemented
in the digital domain. The trainer includes two sub-blocks:
1) an input buffer to store the streamed-in input x, and 2) a
gradient buffer to store intermediate gradients. The updated
weights are written once per batch into the BCA to amortize
the energy and latency costs from SRAM write operation. The
trainer allows the learning rate γ to be configured in powers-
of-2.
A.3 Measurement Setup: We evaluate the prototype IC (see
Fig. 20) for a face detection task on MIT CBCL dataset [75]. It
is a binary classification problem where the dataset comprising

(a)

(b)

Fig. 22. Measured: (a) classification accuracy as a function of ∆VBL,max,
where 38% reduction in ∆VBL,max is achieved by on-chip learning, and (b)
IM-CORE energy as a function of ∆VBL,max showing a 2.4× energy saving
(V ∗DD,IM-CORE: minimum supply voltage to prevent destructive read) [28].

4000 training and 858 test images. The images are re-sized to
11×11 pixels such that it fits into the 128 word row width of
the DIMA BCA. During training, input batch was generated by
sampling the training set randomly with replacement. During
convergence, the misclassification rate pe was measured at the
end of every 8th batch.

A.4 Robustness Enhancement: Starting from random initial
weights in the BCA, on-chip learning converges to a mis-
classification error rate of pe ≤ 7% as shown in Fig. 21.
At the end of 400 batch updates with γ = 2−3 and 2−4,

14

Fig. 23. Measured on-chip energy compared to a conventional digital
reference architecture (CONV) for training (at N = 64) and inference,
showing a simultaneous reduction in energy consumption and delay by 21×
and 4.7×, respectively. The supply voltage VDD,IM-CORE and ∆VBL: (1 V,
560 mV) and (675 mV, 320 mV) are tested [28].

on-chip learning results in the pe within 1% of floating-point
accuracy. When ∆VBL,max is reduced to 320 mV from 560 mV
at the batch number m = 400, the misclassification rate pe
increases drastically to 18% due to the increased impact of
spatial variations. The misclassification rate pe recovers to
<8% with γ ≤ 2−3 due to the continual on-chip learning.
Similarly, pe increases to 16% with an abrupt change of the
illumination in the input images at m = 400 (see Fig. 21(b)),
but further training eventually reduces it down to 6%. The
on-chip learned weights are found to be chip specific, e.g.,
when weights learned from specific chip are tested on other
chip instances, the average pe increases from 8.4% to 43%
(see Fig. 21(c)). Figure 21 indicates the enhanced robustness
to chip-specific variations in the process parameters and the
input data statistics due to the on-chip training.
A.5 Reduction in System-level EDP: The minimum ∆VBL,max

required to maintain pe ≤ 8% is 520 mV without on-
chip training (Fig. 22(a)). On the other hand, the target
misclassification rate can be achieved with a 38% lower
∆VBL,max = 320 mV with on-chip learning. Operating with
∆VBL,max = 320 mV enables the reduction of VDD,IM-CORE
from 0.875 V to 0.675 V without encountering destructive
reads (see Fig. 22(b)). Thus, on-chip learning enables a 2.4×
reduction in IM-CORE energy without accuracy degradation.
The prototype achieves energy reduction of 1.5×-to-2.6× for
pe in the range 5%-to-8% over the multi-functional DIMA IC
in Section IV due to on-chip learning.

The SRAM write operations during the weight update
operation at the end of each batch dominates the training
energy costs. However, this cost is amortized over the batch
size N . For N = 128, the contribution of SRAM writes is
< 26% of the total training energy, and 60% of the total energy
can be attributed to the controller which is amortized over the
BCA size.

The measured result shows a 7.8× energy savings over
CONV, which is a conventional digital architecture including
an SRAM with the same BCA size as the one in DIMA
prototype, when operating with pre-trained weights at ∆VBL =
560 mV (see Fig. 23). With on-chip training, this energy

Fig. 24. The random forest (RF) algorithm (RSS: random sub-sampling) [27].

reduction increases to 21×. Combined with a 4.7× reduction
in delay, DIMA achieves an overall 100× reduction in EDP
over an equivalent digital architecture.

SRAM writes in DIMA during training are no different than
in the conventional architecture and such writes are energy ex-
pensive. In order to alleviate the cost of SRAM writes, training
is done in batch mode and write are executed once per batch.
With batch mode updates and writes, the energy reduction
factor during training reduces to 6.2× with batch size N = 64
from its value of 21× during inference mode. Since practical
environments are quasi-static or slowly varying, it is expected
that the training mode will be activated very infrequently, and
hence the energy savings in the inference mode will manifest
themselves.

B. Error Compensation via the Random Forest (RF) Algorithm

Another algorithmic approach to enhance DIMA’s robust-
ness to PVT variations is to employ ensemble algorithms such
as Boosting [76] and Bagging [77]. Such algorithms employ
multiple weak (low-accuracy) classifiers whose decisions are
aggregated to obtain a strong (high-accuracy) classification at
the final output. For example, [25] employed the AdaBoost
algorithm whereby binary-weighted SVMs are realized on the
BLs and whose outputs were weighted, summed, and sliced
to obtain the final (strong) decision.

The RF algorithm [78] is another option. This algorithm
employs an ensemble of decision trees as weak classifiers
and employs a simple majority-vote to obtain a strong clas-
sifier decision. Furthermore, the RF algorithm scales easily
to multi-class problems and involves simple operation, e.g.,
comparisons, which are suitable for being mapped to DIMA.

15

Fig. 25. DIMA implementing the RF algorithm. Analog computations are
marked in RED [27].

Fig. 26. Micrograph of the DIMA-based RF classifier IC [27].

We illustrate the use of the RF algorithm via a case study
of a DIMA IC prototype in a 65 nm CMOS process [27], [79].
This prototype demonstrates that the RF algorithm is effective
in generating accurate inferences in spite of the increased
variations in the BL voltage discharge ∆VBL that would occur
if the maximum BL discharge were to be reduced to save
energy (see Fig. 18).
B.1 Random Forest Algorithm: Figure 24 describes the
RF algorithm, which consists of M decision trees with a
maximum of N nodes per tree. Each tree processes ran-
domly sub-sampled (RSS) pixels input image x based on
a pseudo-random pattern vector that is obtained during the
training stage. For example, given a pattern vector pm ≡
{pm,1, pm,2, .., pm,N} associated with the m-th tree, the nth

node of this tree compares the pixel (or feature) x(pm,n)
indexed by pm,n with a threshold τm,n to obtain a node-
level binary decision qm,n. Each node decision qm,n dictates
if the left or the right branch needs to be taken. This process
is iterated until the binary search reaches one (lth) of leaf
nodes with the label cm,l, which corresponds to the tree-level
decision. The final ensemble decision is obtained by majority-
voting the decisions of all the M trees.

Fig. 27. Comparator error rates measured from prototype IC. Note: ∆Vlsb is
fine-tuned by controlling the WL access pulse VWL (see Fig. 3), and estimated
from (16) by employing measured values of ∆VBL with X = 15 and T = 0
in the test mode of silicon prototype [27].

B.2 Decision-trees in DIMA: The decision tree comparisons in
DIMA are implemented in highly parallel fashion by unrolling
the tree across the memory array (see Fig. 25). This unrolling
eliminates the need to conditionally fetch the B-b thresholds
τm,n. The comparison begins with the simultaneous application
of WL access pulses to all the rows storing a threshold T =
τm,n and a pixel X = x(pm,n) as in the functional read (FR)
process similar to the MD mode in Section II. Therefore, ∆VBL
is proportional to (T −X) given as:

∆VBL(T,X) =
VPREW0

RBLCBL

B−1∑
i=0

2i(ti + xi)

= ∆Vlsb(T −X − 1) (16)

where xi and ti are the ith bit of X and T , respectively. Due
to the complementary nature between BL and BLB, ∆VBLB is
also proportional to (X − T). Then, analog comparators [80]
generate node-level decisions (qm,n) by comparing ∆VBL and
∆VBLB in parallel per each column.
B.3 Architecture: Figure 25 shows the overall architecture of
silicon prototype, which includes a CORE with a 512×256
SRAM BCA, FR WL drivers, peripherals for standard
read/write operations, an input buffer to store the streamed-
in 256-b x, a digital CTRL, a 64-b I/O (BIO = 64) with a 4 :
1 (L = 4) column mux, a majority voter, and crossbars. Other
features are the same as those listed in Fig. 9(b).

The prototype IC processes a group of four trees in parallel,
requiring 171 clock cycles. A total of M/4 such groups
are processed sequentially, where M ≤ 168. The processing
begins by storing the four copies of 4:1 sub-sampled image
xs in the input buffer. Then, the pixel indices pm,ns are
fetched from the BCA into index registers inside the cross
bar through 12 normal SRAM read accesses. Next, according
to the index pm,n, the B = 8-b pixels x(pm,n)s are fetched
from input register and subsequently placed into the RSS
registers in the cross bar. Finally, the x(pm,n)s are written
into the replica BCA so that in-memory comparison between
x(pm,n) and thresholds τm,n is prepared. The FR operation
begins by applying PWM WL enabling signals, and then
BL and BLB are fed to analog comparators. The 128 pitch-

16

Fig. 28. BL voltage swing ∆Vlsb vs. decision accuracy (Pdet) with the number
of trees (M) = 4 and 64 [27].

Fig. 29. Classification accuracy for traffic sign recognition across chips with
numbers of trees (M) = 4 and 64 at ∆Vlsb = 25 mV [27].

matched analog comparators generate 128 comparison outputs
qm,ns per precharge cycle in parallel. The controller uses the
address generated by the in-memory comparison outputs qm,n,
to fetch the four tree-level labels cm,ls from the BCA. The
final decision is generated by majority voting the M tree-level
labels cm,l after processing M/4 such groups.
B.4 Measurement setup: An 8-class traffic sign recognition
task on the KUL Belgium traffic sign dataset [81] was
employed to test the IC. The tree depth was chosen to be
six, which is the minimum needed to minimize the accuracy
degradation in the target application [82]. The impact of the
number of trees on accuracy was evaluated by testing the IC
with M = 4 and M = 64. We used 200 randomly chosen
test images were used to determine the classification accuracy
(Pdet).

The DIMA RF IC is compared with a conventional dig-
ital implementation that employs the same architecture as
in Fig. 25, but with a 256 : 1 crossbar and digital logic
for the comparison operations. Eight digital comparisons are
performed in parallel for each read cycle that fetches eight
τm,ns (64-b) from the SRAM. The memory and the dig-
ital comparators are pipelined to improve throughput. The
energy and delay costs of the conventional digital system
are estimated by combining the measured results of normal
SRAM read access from the prototype IC and the post-layout
simulation results of the crossbar and digital comparators.
B.5 Measured Robustness: The BL swing ∆VBL has maximum
25 mV deviations due to the multiple sources of process

Fig. 30. Trade-off in energy vs. accuracy for traffic sign recognition task with
respect to the number of trees (M) at ∆Vlsb = 5 to 25 mV [27].

Fig. 31. Energy and delay breakdown at ∆Vlsb = 25 mV (∆VBL = 200 mV)
obtained via post-layout simulations [27].

variations. The measured error rate of in-memory comparison
increases from 1.6% to 14.5% as a consequence of increased
impact of process variations when ∆Vlsb reduces from 25 mV
to 5 mV (see Fig. 27). We measured the comparator errors at
each ∆Vlsb during the classification with the KUL Belgium
dataset.

System simulations show that M = 64 trees tolerates
a comparator error rate of 9.5% with undiscernible 8-class
classification accuracy loss, whereas only 4% comparison error
rate can be tolerated with M = 4. Therefore, ∆Vlsb = 15 mV
and 8 mV are required to prevent accuracy degradation when
M = 4 and 64, respectively (see Fig. 27). When operating
with M = 64 on the prototype IC, ∆Vlsb can be reduced to
15 mV with minimal loss in accuracy while ∆Vlsb can only bre
reduced to 20 mV when operating with M = 4 (see Fig. 28).
Thus, the RF algorithm’s inherent error tolerance enables
its DIMA-based realization to achieve negligible accuracy
degradation in spite of comparator errors.

The impact of process variations can be observed by mea-
suring Pdet over multiple (5) dies. Minor differences in Pdet are
observed, e.g., <2% with M = 64 in Fig. 29. This indicates
that the ensemble nature of the RF algorithm provides inherent
error tolerance to compensate process variations.
B.6 Energy Efficiency: The energy vs. accuracy trade-off with
respect to 1) the number of trees (M), and 2) the BL voltage

17

(a)

(b)

Fig. 32. SNR requirements of dot-product in popular DNNs [83]: (a) box plots
indicating layer-wise SNR requirements variability, and (b) per-layer SNR
requirements and precision (Bw, Bx) of VGG-16 deployed on ImageNet.
Precision requirements were obtained by a 1-step quantization of a floating-
point network and hence are conservative.

swing ∆Vlsb are analyzed in Fig. 30. The energy savings in
the prototype IC can be improved by reducing ∆Vlsb or M .
However, controlling M allows a graceful trade-off between
the energy consumption and Pdet. For example, we can achieve
14.5× energy savings with less than 10% drop in Pdet by tun-
ing M , whereas reducing ∆Vlsb results in 68% degradation in
Pdet with only 1.7× reduction in energy. Therefore, choosing
a smaller M always achieves better energy efficiency than
reducing ∆Vlsb for a fixed classification accuracy Pdet.

The prototype IC achieves the misclassification rate of
6% with an energy savings of 3.1× over the conventional
architecture. One can expect the energy efficiency to improve
in real-world tasks with a few hundreds trees, where ∆Vlsb
can be reduced further. As expected, the face detection task,
which is a binary classification, is more tolerant to the ∆Vlsb
reduction than 8-class traffic sign recognition. This indicates
that the prototype IC can achieve a smooth energy vs. accuracy
trade-off via ∆Vlsb scaling based on the number of trees M ,
target accuracy, and the number of classes.

Figure 31 shows the energy and delay breakdowns estimated
from post-layout simulations. The estimated results show 3.1×
energy saving and 2.2× delay reduction leading to 6.8× EDP
reduction over the digital system.

VI. FUNDAMENTAL ENERGY-DELAY-ACCURACY
TRADE-OFFS

Previous sections have shown that DIMA can achieve large
EDP reductions (see Figs. 14, 23, 31) over an equivalent digital
architecture with a negligible loss in inference accuracy –

TABLE II
DISTORTION AND NOISE IN DIMA [26].

Error type FR (ηF) BLP (ηB) CBLP (ηC)

% mean distortion 2.6(1) 2.1(1) 0.8(3)

% noise (σ/µ) (6 -to- 29)(2) 2.8(2) 0.2(3)

- Row 1: average distortion over all 16 4-bit data values.
- Row 2: noise of maximum discharge ∆VBL,max.
- (1) measured from silicon prototype; (2) estimated from Monte
Carlo simulations at 0.4 V ≤ VWL ≤ 0.8 V; (3) estimated from the
size of capacitor in [26].

a conclusion supported by measured results from multiple
prototype ICs [25]–[28]. We have also seen that DIMA is
a flexible architecture demonstrating an intrinsic energy vs.
accuracy trade-off (see Figs. 13(c), 30). This trade-off is
affected by the choices of several of DIMA design parameters:
1) the BL discharge voltage ∆VBL, 2) the operand and ADC
precision, 3) the BCA size (NROW × NCOL), and 4) the ML
workload, e.g., DNN size, number of classes, statistics of the
dataset and others. Thus, the DIMA design space is complex
and, while existing DIMA IC prototypes have demonstrated
good choices for those design parameters, it is not clear what
are the optimal choices and, therefore, the limits of energy-
delay-accuracy for DIMA are.

In this section, we present a system-level framework to
understand this fundamental trade-off and, therefore, the limits
of energy-delay and accuracy. This framework begins by
defining DIMA’s compute SNR, followed by the development
of silicon-validated models of the dot-product SNR, and finally
by employing these models to find a favorable design space for
DIMA to maximize its EDP gain for a given target accuracy.

A. Modeling DIMA’s Compute SNR

Consider the following N -dimensional dot-product:

y = wTx =

N∑
j=1

WjXj (17)

where y is the ideal DP of two vectors w and x with
N elements. Recall that DIMA’s EDP gain is obtained at
the expense of a loss in its compute SNR caused by its
intrinsic analog nature. We explore the source of this SNR
loss by analyzing the impact of various noise sources on the
computation of a DP within DIMA.

Assuming a fixed total discharge time T , the DP computa-
tion (17) in the presence of circuit non-idealities is transformed
as follows:

ŷ =
1

N

N∑
i=1

(Wi + g(Wi, T) + ηF,i)Xi + ηB + ηC (18)

= y + ηy (19)

where g(W,T) is an additive term representing distortion and
ηF is the spatial noise (variance σ2

wF) in W due to FR. Here,
ηB (variance σ2

B) and ηC (variance σ2
C) represent the additive

noise terms due to non-ideal behavior in the BLP and CBLP,
respectively. Finally, ηy is the composite noise as seen in y at
the CBLP output.

18

Fig. 33. Accuracy prediction model vs. silicon measured results [26] on
probability of detection (Pdet) with NROW = 512 for SVM. The MIT-CBCL
dataset was used [64].

Table II quantifies noise contributions and distortion ηF, ηB,
and ηC at the outputs of the FR, BLP, and CBLP stages, whose
noise variances are σ2

F � σ2
B � σ2

C. As shown in Fig. 18, the
noise in FR dominates due to the minimum-sized transistors
in the BC and near-threshold voltage operation caused by
a low VWL leading to a significant spatial mismatch. Using
these models, the total compute SNR (SNRT) can be estimated
using:

SNRT =
E[y2]

E[η2
y]

=
E[y2]

E[X2]σ2
wF/N + E[D2] + σ2

B + σ2
C

(20)

where D = N−1
∑N
i g(Wi, T)Xi is the distortion reflected

at the output.

B. Compute SNR Requirements of DNNs

In order to estimate typical SNR requirements of DPs in a
DNN, we leverage the analysis in [83], [84] that establishes
theoretical guarantees on the worst-case degradation in the
inference accuracy due to a 1-step quantization of activations
and weights of a floating-point network. This method in [83]
computes the noise gain from a quantization noise source
from an internal node of the network to its output in order to
estimate its impact on network accuracy without employing
retraining.

Employing the method outlined above, the DP-level SNR
requirements of four popular DNNs deployed on ImageNet
and CIFAR-10 dataset were obtained under an accuracy loss
budget of ≤ 1% as shown in Fig. 32(a). This plot shows that
the typical SNR requirements of DNN at the DP-level ranges
between 10 dB-to-40 dB. To understand the distribution of the
SNR requirements across individual layers in a network, we
study the per-layer SNR requirements of VGG-16 deployed on
ImageNet. Figure 32(b) shows that the DP SNR requirements
decrease with layer depth and the precision requirements
conservatively lie in the range as 5 ≤ Bw ≤ 13 (weights)
and 5 ≤ Bx ≤ 8 (activations). These precision requirements
can be reduced further, e.g., ≈ 4-bits, via retraining methods
that search for better solutions in the quantized domain [85].

P
ro

ba
bi

lit
y

of
 d

et
ec

tio
n

[%
]

Energy per decision [pJ]

≈ 10× energy savings

96

94

92

90

88

86

84

82

80

(a)

(b)

Fig. 34. Energy vs. decision accuracy trade-offs from accuracy prediction
models (21) by sweeping ∆VBL-B for SVM with αSVM ∈ [0.2, 0.6] and
vector length N = 128, and (b) N = 512 [64].

These trends provide another justification for the use of
DIMA to realize DNNs since it has been shown that the analog
computations are more energy efficient than the digital at lower
SNRs (SNR < 60 dB) [86], and because the deeper layers tend
to be memory bound as the opportunities for weight reuse
decrease.

C. Fundamental Trade-offs and Limits

The SNR modeling of DIMA operations in section VI-A
allows us to study the fundamental trade-offs between accu-
racy vs. energy efficiency as a function of various algorith-
mic, architectural and circuit parameters such as the vector
dimension N and the decision margins the array size (NROW).
Furthermore, this allows us to determine conditions under
which DIMA’s EDP vs. accuracy trade-off is favorable. In this
section, we present the general trends and trade-offs in DIMA,
and our conclusions supported by analysis and simulations of
the SVM algorithm implemented on DIMA.

Numerical values for the parameters of the energy and
SNR models were obtained from circuit-level simulations on a
65 nm CMOS process and the measurements from the silicon
prototype in [26] when possible. The total estimated energy

19

TABLE III
MODEL AND DESIGN PARAMETERS [64].

Parameter Values Parameter Values

VDD / VPRE 1 V VWL 0.4− 0.9 V

bit precision B 8 col. mux ratio L 4
of rows NROW 256 - 1024 # of col.s NCOL 256

WL pulse width T0 300 ps vector length N 128 - 1024

from (9) and (10) are validated by comparing with the
measurements from the silicon prototype [26]. In this section,
the design parameters listed in Table III and the MIT CBCL
dataset are considered.
C.1 Accuracy Trade-offs vs. Energy Efficiency: The maximum
classification accuracy loss (ploss) in the SVM algorithm as a
function of the DP SNR (SNRT) is governed by [64]:

ploss < Q
(
NαSVM

√
SNRT

)
(21)

where αSVM is the margin in the SVM algorithm. We can
use (21) along with the SNR analysis methodology in Sec-
tion VI-A to estimate the accuracy of SVM algorithm imple-
mented on DIMA. The SVM accuracy prediction model (21)
applied on DIMA is validated by comparing its prediction with
silicon measured results in [26] (see Fig. 33).

The SVM accuracy prediction model (21) used along side
(9) and (10) allows us to relate the energy of SVM im-
plementation on DIMA and digital architectures and to its
system level accuracy. Figure 34 indicates that DIMA achieves
approximately 10× energy savings per decision at the same
accuracy as compared to the digital architecture. Therefore, a
50×-to-200× EDP reduction is achieved over a digital system
along with a 5×-to-20× delay reduction (see Section II-E).
This observation correlates well with the 100× EDP reduction
from silicon prototypes in [28]. It is also seen that the accuracy
Pdet improves with the vector length N and decision margin
αSVM.
C.2 Impact of Array Size: The number of columns NCOL of
the BCA is upper bounded by the need to keep rising/falling
times of the WL enabling signals much smaller than the LSB
pulse width T0. This can be made difficult due to the increased
WL capacitance and the row pitch-matching constraints. On
the other hand, the upper bound on the number of rows NROW,
impacts the energy and inference accuracy. This is because
the BL capacitance CBL increases with NROW leading to a
higher energy consumption for the same BL discharge voltage
∆VBL. Additionally, a higher WL enabling voltage VWL is
needed to increase the BC currents and hence maintain the
same discharge time. This higher VWL helps to alleviate the
impact of transistor threshold voltage variations in the access
transistors. These trends lead to improved accuracy (Fig. 35(a))
but with higher energy consumption (Fig. 35(b)) for both
architectures. Figure 35 also indicates that DIMA requires
sufficiently large NROW, e.g., NROW = 256, to achieve an
accuracy equivalent to that of the digital system.
C.3 DIMA Design Space: The conditions under which DIMA’s
energy benefits can be maximized are summarized below:

(a)

(b)

Fig. 35. Inference accuracy vs. the number of rows NROW in the BC array
with respect to: (a) BL swing per bit, and (b) decision energy for SVM with
αSVM = 0.4 and N = 128 [64].

• For both DIMA and the digital architecture, there is
a lower bound on the BL swing ∆VBL beyond which
the inference accuracy drops significantly. Figure 33
shows this lower bound to be ≈ 100 mV for DIMA and
≈ 250 mV for the digital architecture when NROW = 512.
In addition, this lower bound is inversely proportional to
NROW.

• DIMA’s inference accuracy improves with a higher de-
cision margin αSVM due to the intrinsic error tolerance
of the ML algorithms. Additionally, DIMA consumes
≈ 10× less energy than the digital system at the same
inference accuracy (Fig. 34).

• DIMA’s inference accuracy improves with higher vector
dimension N , but at a cost of higher energy consumption,
e.g., the energy cost increases by 4× when N increases
from 128 to 512.

• DIMA cannot achieve an accuracy equivalent to that of
a digital system when α SVM, N or/and NROW are small.

To summarize, DIMA’s efficiency is enhanced when the
number of rows NROW and the vector length N are large, and
for inference tasks with high decision margin αSVM. As ML
algorithms have inherent error tolerance, i.e., αSVM is large,
perform better with large vector lengths N , and have high
storage requirements, i.e., large values of NROW, we conclude

20

TABLE IV
EXTENT TO WHICH IDEALIZED DIMA ATTRIBUTES ARE SATISFIED BY

EXISTING CMOS DIMA ICS

Ideal DIMA attributes
Remarks

BCs Row
Parallelism/NROW

BL
Compute

Delayed
Decision

Ideal S-6T NROW/NROW QA / IA / QS Yes
[26] S-6T 4/512 QA & QS Yes multi-bit, reconfigurable
[29] 10T 16/256 QS Yes binary-weighted
[25] S-6T 81/128 QA No binary-weighted, AdaBoost
[32] 8T+Cap 512/512 QS Yes binarized
[59] S-6T 4/512 QA & QS Yes multi-bit, on-chip learning
[27] S-6T 4/512 QS No multi-bit, random forest
[31] M-6T 64/64 QS Yes binarized
[33] 12T 256/256 IA Yes binarized
[34] 8T 64/64 QA & QS Yes multi-bit
[35] 8T+Cap 2304/2304 QS No multi-bit via digital combining
[36] 17T 148/148 QA No multi-bit via digital combining
[37] M-6T 60/64 IA Yes binarized
[38] M-6T 64/64 QA Yes binarized
[39] 8T 6/64 QA & QS Yes multi-bit
[40] M-6T 32/32 QA No multi-bit via digital combining
[41] 8T 64/64 QA & QS Yes multi-bit
[42] M-6T 32/512 QA No multi-bit via digital combining

S-6T: Standard 6T SRAM BC, M-6T: Modified 6T BC.
QA: Charge accumulation on a single capacitor, e.g., BL capacitor.
QS: Charge sharing across multiple capacitors.
IA: Current accumulation via multiple current sources.
Binary-weighted indicates that weights use 1-b precision.
Binarized indicates that both inputs and weights use 1-b precision.

that DIMA is well-suited for inference tasks.

VII. DISCUSSION AND FUTURE PROSPECTS

Since the publication of the DIMA concept paper [16], in-
memory computing as a promising technology for bringing
the power of AI into everyday lives. This section provides a
comparison of various DIMA topologies and trends in DIMA
design techniques, discusses the scalability of DIMA over
process technology, and concludes with future prospects.

A. Recent DIMA Trends and Comparison

The attributes of an idealized DIMA (see Section II-A)
include: (1) the use of a standard BCA, (2) row parallelism, (3)
BL computations, and (4) delayed decision. While existing in-
memory architectures strive to satisfy these principles, they fall
short in order to either enhance scalability and/or robustness.
The version of DIMA presented in this paper preserves: a)
memory density by employing conventional 6T BC memory
architecture, and b) generality by enabling multi-bit vector
operations. Other variants of DIMA make alternative design
choices such as: 1) restricting one or both operands to binary
(1-bit) precision and combining them in digital [35], 2) using
larger (8T or 10T) BCs [29], 3) using specialized BCs that
enable computations [32], 4) partitioning the array into sub-
banks [29], [42], and 5) using separate right and left WLs [31].
Table IV compares existing DIMAs in terms of the attributes
of an idealized DIMA. One can see that achieving maximum
row-parallelism is specially challenging if BL processing of
multi-bit weights needs to be done.

B. Scalability of DIMA over Process Technology

As CMOS process scales, we expect improved energy
efficiency and throughput due to lower capacitance and lower

supply voltage. For example, post layout simulations show 4×
smaller BL capacitance in a 28 nm technology as compared to
a 65 nm technology. This leads to 4× smaller BL precharge en-
ergy (assuming the same VDD and ∆VBL,max), which dominates
the energy consumption in DIMA. The smaller BL capacitance
also leads to lower delay.

However, DIMA’s mixed-signal nature makes it vulnerable
to multiple noise sources in advanced process nodes. For ex-
ample, increased coupling noise due to strict layout constraints
can lead to reduced accuracy in charge-domain computations.
Thus, the area overhead of shielding in layouts is expected
to increase as shown in [26]. The advanced nodes also suffer
from the increased process variations which incur higher σ/µ
of ∆VBL,max leading to the decision accuracy degradation.
In fact, one can emulate operation in an advanced node by
reducing the BL voltage swing. For example, σ/µ in Fig. 18
is around 9% at the default ∆VBL max = 550 mV, but it reaches
18% by scaling down ∆VBL max to 320 mV. One can expect
an equivalent impact of increased variations in a highly scaled
process technology.

The equation (21) indicates that the loss of inference ac-
curacy can be recovered by increasing ∆VBL,max and/or N at
the cost of increased energy consumption. Alternatively, the
impact of increased variations can be overcome via on-chip
training as shown in Fig. 22(b), where the inference accuracy
at ∆VBL max = 320 mV is is equal to that at VBL max = 550 mV.
The inference accuracy under low BL swing can also be
enhanced by using a classifier ensemble as shown in Fig. 28
with ∆Vlsb = 20 mV.

These observations indicate that there are multiple algorith-
mic, architectural and circuit design approaches that can help
to overcome the impact of increased process variations on
DIMA’s accuracy. Therefore, there exists an interesting trade-
off between the EDP gains from the technology scaling and
the loss in accuracy due to increased variations. This trade-off
needs further study.

C. Future Prospects

Though DIMA provides significant energy and delay ben-
efits, it has a number of challenges and drawbacks including:
a) an intrinsically limited compute SNR due to its mixed-
signal nature; b) mismatch between the array size and problem
size due to the need for processing data within the BCA;
c) difficulty in exploiting data reuse opportunities due the
difficulty in realizing reliable analog storage; and d) the need
to realize non-MVM computations. Each of these challenges
point to research directions that can be explored.

1) Scalable Deep In-memory Architectures: To map large-
scale applications onto a DIMA-based platform, one can
explore methods to integrate DIMA into large-scale het-
erogeneous architectures such as systolic ML accelerators.
Designing software infrastructure to augment such DIMA-
based platforms will be also essential in order to map high-
level application metrics, e.g., inference accuracy, to low-
level hardware design parameters. Some preliminary work has
already been demonstrated in [61].

21

2) Error Resilient DIMA: In this paper, we introduced
two approaches for enhancing DIMA’s resiliency to process
variations by: 1) employing on-chip training in Section V-A,
and 2) exploiting the ensemble classifier in Section V-B to
overcome the various sources of non-idealities, e.g., process
variation, voltage or temperature fluctuations.

However, there are a number of opportunities in both algo-
rithmic, architectural and circuit domains, that can be explored
including: 1) employing error compensation techniques such
as error correcting codes (ECCs) as well as Shannon-inspired
statistical error compensation (SEC) [68] to achieve greater
reductions in EDP; 2) accuracy-optimal resource assignment
[87], where more resources such as voltage swing, execution
time, and area are assigned to critical components of infer-
ence computations so that accuracy is maximized within an
energy budget; 3) foreground calibration techniques [32] for
chip-specific tuning of circuit parameters before its use for
inference; and 4) robust ML model training [88] so that the
trained network itself becomes robust to variations and errors.

3) DIMA in Emerging Memory Technologies: There are
multiple emerging memory device technologies beyond flash,
DRAM, and SRAM, e.g., PCM, RRAM, MRAM, and others.
These new devices provide fundamentally new design trade-
offs for in-memory techniques and create opportunities for
device-architecture co-design.

In summary, DIMA is a high-density, low-latency, energy
efficient computational platform for realizing AI systems.
DIMA’s enormous EDP gains (> 100×) over the von Neu-
mann architecture arise primarily from its ability to deeply
integrate read and compute functions in analog in the mem-
ory core. However, in doing so, DIMA exhibits an intrinsic
compute SNR vs. EDP trade-off which manifests itself as
a system-level trade-off between inference accuracy, energy
and latency. In this process, DIMA represents an analog ap-
proach to approximate computing encompassing applications,
systems/algorithms, architectures, circuits and devices. This
full-stack nature of DIMA provides numerous collaboration
opportunities for application developers, system/algorithm de-
signers, architects, circuit designers, and researchers in semi-
conductor devices to work together in addressing challenges
in the design of AI systems of the future.

ACKNOWLEDGEMENT

This work was supported by the Systems On Nanoscale
Information fabriCs (SONIC) and the Center for Brain-
Inspired Computing (C-BRIC) funded by the Semiconductor
Research Corporation (SRC) and the Defense Advanced Re-
search Projects Agency (DARPA). We thank Charbel Sakr for
the analysis of SNR and bit precision requirement in deep
neural networks in Section VI-B.

REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of Go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, 2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems (NIPS), 2012, pp. 1097–1105.

[3] M. Horowitz, “Computing’s energy problem (and what we can do about
it),” in IEEE International Solid-State Circuits Conference (ISSCC),
February 2014, pp. 10–14.

[4] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE Journal of Solid-State Circuits (JSSC), vol. 52, no. 1, pp.
127–138, 2017.

[5] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,
“Diannao: A small-footprint high-throughput accelerator for ubiquitous
machine-learning,” in ACM Sigplan Notices, vol. 49, no. 4, 2014, pp.
269–284.

[6] B. Moons, R. Uytterhoeven, W. Dehaene, and M. Verhelst, “Envi-
sion: A 0.26-to-10TOPS/W subword-parallel dynamic-voltage-accuracy-
frequency-scalable convolutional neural network processor in 28nm
FDSOI,” in IEEE International Solid-State Circuits Conference (ISSCC),
2017, pp. 246–247.

[7] D. Shin, J. Lee, J. Lee, and H.-J. Yoo, “DNPU: An 8.1 tops/w reconfig-
urable CNN-RNN processor for general-purpose deep neural networks,”
in IEEE International Solid-State Circuits Conference (ISSCC), 2017,
pp. 240–241.

[8] P. N. Whatmough, S. K. Lee, H. Lee, S. Rama, D. Brooks, and G.-
Y. Wei, “A 28nm SoC with a 1.2 GHz 568nJ/prediction sparse deep-
neural-network engine with >0.1 timing error rate tolerance for IoT
applications,” in IEEE International Solid-State Circuits Conference
(ISSCC), 2017, pp. 242–243.

[9] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H.-J. Yoo, “UNPU: A
50.6 TOPS/W unified deep neural network accelerator with 1b-to-16b
fully-variable weight bit-precision,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2018, pp. 218–220.

[10] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and
R. Das, “Compute caches,” in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2017, pp. 481–492.

[11] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw,
and D. Sylvester, “A compute sram with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration,” in IEEE
International Solid-State Circuits Conference (ISSCC), 2019, pp. 224–
226.

[12] D. Bankman, L. Yang, B. Moons, M. Verhelst, and B. Murmann, “An
always-on 3.8uJ/86% CIFAR-10 mixed-signal binary CNN processor
with all memory on chip in 28-nm CMOS,” IEEE Journal of Solid-
State Circuits, vol. 54, no. 1, pp. 158–172, 2018.

[13] J. Jeddeloh and B. Keeth, “Hybrid memory cube new DRAM architec-
ture increases density and performance,” in 2012 symposium on VLSI
technology (VLSIT). IEEE, 2012, pp. 87–88.

[14] M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat,
H.-S. P. Wong, and S. Mitra, “Monolithic 3D integration of logic and
memory: Carbon nanotube FETs, resistive RAM, and silicon FETs,” in
2014 IEEE International Electron Devices Meeting. IEEE, 2014, pp.
27–4.

[15] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm
configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit
cell enabling logic-in-memory,” IEEE Journal of Solid-State Circuits,
vol. 51, no. 4, pp. 1009–1021, 2016.

[16] M. Kang, M.-S. Keel, N. R. Shanbhag, S. Eilert, and K. Curewitz,
“An energy-efficient VLSI architecture for pattern recognition via
deep embedding of computation in SRAM,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
May 2014, pp. 8326–8330.

[17] M. Kang, S. K. Gonugondla, and N. Shanbhag R., Deep In-memory
Architectures for Machine Learning. Springer, 2020.

[18] N. Verma, H. Jia, H. Valavi, Y. Tang, M. Ozatay, L.-Y. Chen, B. Zhang,
and P. Deaville, “In-memory computing: Advances and prospects,” IEEE
Solid-State Circuits Magazine, vol. 11, no. 3, pp. 43–55, 2019.

[19] P.-T. Huang and W. Hwang, “A 65 nm 0.165 fj/bit/search 256×144
TCAM macro design for IPv6 lookup tables,” IEEE Journal of Solid-
State Circuits, vol. 46, no. 2, pp. 507–519, 2010.

[20] K. Nii, T. Amano, N. Watanabe, M. Yamawaki, K. Yoshinaga, M. Wada,
and I. Hayashi, “A 28nm 400MHz 4-parallel 1.6 Gsearch/s 80Mb ternary
CAM,” in IEEE International Solid-State Circuits Conference Digest of
Technical Papers (ISSCC). IEEE, 2014, pp. 240–241.

[21] J. Li, R. Montoye, M. Ishii, K. Stawiasz, T. Nishida, K. Maloney,
G. Ditlow, S. Lewis, T. Maffitt, R. Jordan et al., “1Mb 0.41 µm 2
2T-2R cell nonvolatile TCAM with two-bit encoding and clocked self-
referenced sensing,” in Symposium on VLSI Technology (VLSI-T). IEEE,
2013, pp. C104–C105.

[22] S. Matsunaga, S. Miura, H. Honjou, K. Kinoshita, S. Ikeda, T. Endoh,
H. Ohno, and T. Hanyu, “A 3.14 um 2 4T-2MTJ-cell fully parallel

22

TCAM based on nonvolatile logic-in-memory architecture,” in Sympo-
sium on VLSI Circuits (VLSI-C). IEEE, 2012, pp. 44–45.

[23] L.-Y. Huang, M.-F. Chang, C.-H. Chuang, C.-C. Kuo, C.-F. Chen, G.-
H. Yang, H.-J. Tsai, T.-F. Chen, S.-S. Sheu, K.-L. Su et al., “ReRAM-
based 4T2R nonvolatile TCAM with 7x NVM-stress reduction, and 4x
improvement in speed-wordlength-capacity for normally-off instant-on
filter-based search engines used in big-data processing,” in Symposium
on VLSI Circuits (VLSI-C). IEEE, 2014, pp. 1–2.

[24] N. Shanbhag, M. Kang, and M.-S. Keel, Compute Memory. Issued July
4 2017, US Patent 9,697,877 B2.

[25] J. Zhang, Z. Wang, and N. Verma, “In-memory computation of a
machine-learning classifier in a standard 6T SRAM array,” IEEE Journal
of Solid-State Circuits, vol. 52, no. 4, pp. 915–924, April 2017.

[26] M. Kang, S. K. Gonugondla, A. Patil, and N. R. Shanbhag, “A multi-
functional in-memory inference processor using a standard 6T SRAM
array,” IEEE Journal of Solid-State Circuits (JSSC), vol. 53, no. 2, pp.
642–655, 2018.

[27] M. Kang, S. K. Gonugondla, S. Lim, and N. R. Shanbhag, “A 19.4-
nJ/decision, 364-K decisions/s, in-memory random forest multi-class
inference accelerator,” IEEE Journal of Solid-State Circuits (JSSC),
vol. 53, no. 7, pp. 2126–2135, July 2018.

[28] S. K. Gonugondla, M. Kang, and N. R. Shanbhag, “A variation-
tolerant in-memory machine learning classifier via on-chip training,”
IEEE Journal of Solid-State Circuits (JSSC), vol. 53, no. 11, pp. 3163–
3173, Nov. 2018.

[29] A. Biswas and A. P. Chandrakasan, “Conv-RAM: An energy-efficient
SRAM with embedded convolution computation for low-power CNN-
based machine learning applications,” in IEEE International Solid-State
Circuits Conference-(ISSCC), 2018, pp. 488–490.

[30] W.-H. Chen, K.-X. Li, W.-Y. Lin, K.-H. Hsu, P.-Y. Li, C.-H. Yang,
C.-X. Xue, E.-Y. Yang, Y.-K. Chen, Y.-S. Chang et al., “A 65nm
1Mb nonvolatile computing-in-memory ReRAM macro with sub-16ns
multiply-and-accumulate for binary DNN AI edge processors,” in IEEE
International Solid-State Circuits Conference (ISSCC), 2018, pp. 494–
496.

[31] W.-S. Khwa, J.-J. Chen, J.-F. Li, X. Si, E.-Y. Yang, X. Sun, R. Liu,
P.-Y. Chen, Q. Li, S. Yu et al., “A 65nm 4kb algorithm-dependent
computing-in-memory SRAM unit-macro with 2.3 ns and 55.8 TOPS/W
fully parallel product-sum operation for binary DNN edge processors,”
in IEEE International Solid-State Circuits Conference (ISSCC), 2018,
pp. 496–498.

[32] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A 64-tile 2.4-
Mb in-memory-computing CNN accelerator employing charge-domain
compute,” IEEE Journal of Solid-State Circuits, vol. 54, no. 6, pp. 1789–
1799, 2019.

[33] Z. Jiang, S. Yin, M. Seok, and J.-s. Seo, “XNOR-SRAM: In-memory
computing SRAM macro for binary/ternary deep neural networks,” in
IEEE Symposium on VLSI Technology, 2018, pp. 173–174.

[34] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C.
Wei, S.-Y. Wu, X. Sun, R. Liu et al., “A twin-8T SRAM computation-in-
memory macro for multiple-bit CNN-based machine learning,” in IEEE
International Solid-State Circuits Conference (ISSCC), 2019, pp. 396–
398.

[35] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N. Verma, “A microproces-
sor implemented in 65nm CMOS with configurable and bit-scalable
accelerator for programmable in-memory computing,” arXiv preprint
arXiv:1811.04047, 2018.

[36] S. Okumura, M. Yabuuchi, K. Hijioka, and K. Nose, “A ternary based
bit scalable, 8.80 TOPS/W CNN accelerator with many-core processing-
in-memory architecture with 896k synapses/mm2,” in 2019 IEEE Sym-
posium on VLSI Circuits. IEEE, 2019, pp. 248–249.

[37] J. Kim, J. Koo, T. Kim, Y. Kim, H. Kim, S. Yoo, and J.-J. Kim, “Area-
efficient and variation-tolerant in-memory BNN computing using 6T
SRAM array,” in IEEE Symposium on VLSI Circuits (VLSI-C). IEEE,
2019, pp. 118–119.

[38] R. Guo, Y. Liu, S. Zheng, S.-Y. Wu, P. Ouyang, W.-S. Khwa, X. Chen, J.-
J. Chen, X. Li, L. Liu, M.-F. Chang, S. Wei, and S. Yin, “A 5.1pJ/neuron
127.3us/inference RNN-based speech recognition processor using 16
computing-in-memory SRAM macros in 65nm CMOS,” in 2019 IEEE
Symposium on VLSI Circuits. IEEE, 2019, pp. 120–121.

[39] J. Yue, Z. Yuan, X. Feng, Y. He, Z. Zhang, X. Si, R. Liu, M.-F. Chang,
X. Li, H. Yang, and Y. Liu, “A 65nm computing-in-memory-based
CNN processor with 2.9-to-35.8TOPS/W system energy efficiency using
dynamic-sparsity performance-scaling architecture and energy-efficient
inter/intra-macro data reuse,” in IEEE International Solid-State Circuits
Conference (ISSCC), 2020, pp. 234–235.

[40] J.-W. Su, X. Si, Y.-C. Chou, T.-W. Chang, W.-H. Huang, Y.-N. Tu,
R. Liu, T.-W. Lu, Pei-Jungand Liu, J.-H. Wang, Z. Zhang, H. Jiang,
S. Huang, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-T. Tang, S.-S. Sheu, S.-
H. Li, H.-Y. Lee, S.-C. Chang, S. Yu, and M.-F. Chang, “A 28nm 64Kb
inference-training two-way transpose multibit 6T SRAM compute-in-
memory macro for AI edge chips,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2020, pp. 240–241.

[41] Q. Dong, M. E. Sinangil, B. Erbagci, D. Sun, W.-S. Khwa, H.-J. Liao,
Y. Wang, and J. Chang, “A 351 TOPS/W and 372.4 GOPS compute-
in-memory sram macro in 7nm FinFET CMOS for machine learning
applications,” in IEEE International Solid-State Circuits Conference
(ISSCC), 2020, pp. 242–243.

[42] X. Si, Y.-N. Tu, W.-H. Huang, J.-W. Su, P.-J. Lu, J.-H. Wang, T.-W. Liu,
S.-Y. Wu, R. Liu, Y.-C. Chou, Z. Zhang, S.-H. Sie, W.-C. Wei, Y.-C.
Lo, T.-H. Wen, T.-H. Hsu, Y.-K. Chen, W. Shih, C.-C. Lo, R.-S. Liu,
C.-C. Hsieh, K.-T. Tang, N.-C. Lien, W.-C. Shih, Y. He, Q. Li, and M.-F.
Chang, “A 28nm 64Kb 6T SRAM computing-in- memory macro with
8b MAC operation for AI edge chips,” in IEEE International Solid-State
Circuits Conference (ISSCC), 2020, pp. 246–247.

[43] C.-X. Xue, T.-Y. Huang, J.-S. Liu, T.-W. Chang, H.-Y. Kao, J.-H. Wang,
T.-W. Liu, S.-Y. Wei, S.-P. Huang, W.-C. Wei, Y.-R. Chen, T.-H. Hsu,
Y.-K. Chen, Y.-C. Lo, T.-H. Wen, C.-C. Lo, R.-S. Liu, C.-C. Hsieh, K.-
T. Tang, and M.-F. Chang, “A 22nm 2Mb ReRAM compute-in-memory
macro with 121-28TOPS/W for multibit MAC computing for tiny AI
edge devices,” in IEEE International Solid-State Circuits Conference
(ISSCC), 2020, pp. 244–245.

[44] H. Li, A. Kadav, I. Durdanovic, H. Samet, and H. P. Graf, “Pruning
filters for efficient convnets,” arXiv preprint arXiv:1608.08710, 2016.

[45] N. Wang, J. Choi, D. Brand, C.-Y. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point numbers,” in
Advances in neural information processing systems, 2018, pp. 7675–
7684.

[46] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Bi-
narized neural networks,” in Advances in neural information processing
systems, 2016, pp. 4107–4115.

[47] V. Mrazek, S. S. Sarwar, L. Sekanina, Z. Vasicek, and K. Roy, “Design of
power-efficient approximate multipliers for approximate artificial neural
networks,” in Proceedings of the 35th International Conference on
Computer-Aided Design, 2016, pp. 1–7.

[48] S. S. Sarwar, S. Venkataramani, A. Raghunathan, and K. Roy,
“Multiplier-less artificial neurons exploiting error resiliency for energy-
efficient neural computing,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2016, pp. 145–150.

[49] S. H. Nawab, A. V. Oppenheim, A. P. Chandrakasan, J. M. Winograd,
and J. T. Ludwig, “Approximate signal processing,” Journal of VLSI
signal processing systems for signal, image and video technology,
vol. 15, no. 1-2, pp. 177–200, 1997.

[50] J. T. Ludwig, S. H. Nawab, and A. P. Chandrakasan, “Low-power digital
filtering using approximate processing,” IEEE Journal of Solid-State
Circuits, vol. 31, no. 3, pp. 395–400, 1996.

[51] N. R. Shanbhag, R. A. Abdallah, R. Kumar, and D. L. Jones, “Stochastic
computation,” in Proceedings of the 47th Design Automation Confer-
ence, 2010, pp. 859–864.

[52] A. Alaghi and J. P. Hayes, “Survey of stochastic computing,” ACM
Transactions on Embedded computing systems (TECS), vol. 12, no. 2s,
pp. 1–19, 2013.

[53] Z. Yang, A. Jain, J. Liang, J. Han, and F. Lombardi, “Approximate
XOR/XNOR-based adders for inexact computing,” in IEEE Interna-
tional Conference on Nanotechnology (IEEE-NANO 2013), 2013, pp.
690–693.

[54] J. Miao, A. Gerstlauer, and M. Orshansky, “Multi-level approximate
logic synthesis under general error constraints,” in IEEE/ACM Inter-
national Conference on Computer-Aided Design (ICCAD), 2014, pp.
504–510.

[55] ——, “Approximate logic synthesis under general error magnitude
and frequency constraints,” in IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2013, pp. 779–786.

[56] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in neural information
processing systems, 2016, pp. 2074–2082.

[57] H. Kaul, M. A. Anders, S. K. Mathew, G. Chen, S. K. Satpathy,
S. K. Hsu, A. Agarwal, and R. K. Krishnamurthy, “A 21.5 M-query-
vectors/s 3.37 nJ/vector reconfigurable k-nearest-neighbor accelerator
with adaptive precision in 14nm tri-gate CMOS,” in IEEE International
Solid-State Circuits Conference (ISSCC), 2016, pp. 260–261.

[58] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy, “Low-power
digital signal processing using approximate adders,” IEEE Transactions

23

on Computer-Aided Design of Integrated Circuits and Systems, vol. 32,
no. 1, pp. 124–137, 2012.

[59] S. K. Gonugondla, M. Kang, and N. Shanbhag, “A 42pJ/decision
3.12 TOPS/W robust in-memory machine learning classifier with on-
chip training,” in IEEE International Solid-State Circuits Conference
(ISSCC), 2018, pp. 490–492.

[60] J. Zhang, Z. Wang, and N. Verma, “A machine-learning classifier
implemented in a standard 6T SRAM array,” in IEEE Symposium on
VLSI Circuits (VLSI Circuits), 2016, pp. 1–2.

[61] H. Jia, Y. Tang, H. Valavi, J. Zhang, and N. Verma, “A microproces-
sor implemented in 65nm CMOS with configurable and bit-scalable
accelerator for programmable in-memory computing,” arXiv preprint
arXiv:1811.04047, 2018.

[62] C. Cortes and V. Vapnik, “Support-vector networks,” Machine learning,
vol. 20, no. 3, pp. 273–297, 1995.

[63] Y. LeCun, D. Touresky, G. Hinton, and T. Sejnowski, “A theoretical
framework for back-propagation,” in Proceedings of the 1988 connec-
tionist models summer school, vol. 1. CMU, Pittsburgh, Pa: Morgan
Kaufmann, 1988, pp. 21–28.

[64] M. Kang, Y. Kim, A. D. Patil, and N. R. Shanbhag, “Deep in-memory
architectures for machine learning–accuracy versus efficiency trade-
offs,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 5, pp. 1627–1639, 2020.

[65] H. Valavi, P. J. Ramadge, E. Nestler, and N. Verma, “A mixed-signal
binarized convolutional-neural-network accelerator integrating dense
weight storage and multiplication for reduced data movement,” in 2018
IEEE Symposium on VLSI Circuits, 2018, pp. 141–142.

[66] M. Kang, S. K. Gonugondla, M.-S. Keel, and N. R. Shanbhag, “An
energy-efficient memory-based high-throughput VLSI architecture for
convolutional networks,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), May 2015.

[67] D. Bankman and B. Murmann, “An 8-bit, 16 input, 3.2 pJ/op switched-
capacitor dot product circuit in 28-nm FDSOI CMOS,” in IEEE Asian
Solid-State Circuits Conference (A-SSCC), 2016, pp. 21–24.

[68] N. R. Shanbhag, N. Verma, Y. Kim, A. D. Patil, and L. R. Varshney,
“Shannon-inspired statistical computing for the nanoscale era,” Proceed-
ings of the IEEE, vol. 107, no. 1, pp. 90–107, 2019.

[69] P. Srivastava, M. Kang, S. K. Gonugondla, S. Lim, J. Choi, V. Adve,
N. S. Kim, and N. Shanbhag, “PROMISE: An end-to-end design of
a programmable mixed-signal accelerator for machine-learning algo-
rithms,” in Proceedings of the 45th Annual International Symposium
on Computer Architecture. IEEE Press, 2018, pp. 43–56.

[70] M. Kang, S. Gonugondla, A. Patil, and N. Shanbhag, “A 481pJ/decision
3.4M decision/s multifunctional deep in-memory inference processor
using standard 6T SRAM array,” arXiv preprint arXiv:1610.07501,
2016.

[71] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou,
and Y. Chen, “PuDianNao: A polyvalent machine learning accelerator,”
in ACM SIGARCH Computer Architecture News, vol. 43, no. 1, 2015,
pp. 369–381.

[72] Z. Zhou, B. Pain, and E. R. Fossum, “CMOS active pixel sensor with
on-chip successive approximation analog-to-digital converter,” IEEE
Transactions on Electron Devices, vol. 44, no. 10, pp. 1759–1763, 1997.

[73] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision.” in International Conference
on Machine Learning (ICML), 2015, pp. 1737–1746.

[74] B. Murmann, D. Bankman, E. Chai, D. Miyashita, and L. Yang, “Mixed-
signal circuits for embedded machine-learning applications,” in IEEE
49th Asilomar Conference on Signals, Systems and Computers, 2015,
pp. 1341–1345.

[75] “Center for biologicaland computationallearning (CBCL) at MIT,” 2000,
http://cbcl.mit.edu/software-datasets/index.html.

[76] Y. Freund and R. E. Schapire, “A desicion-theoretic generalization of
on-line learning and an application to boosting,” in European conference
on computational learning theory. Springer, 1995, pp. 23–37.

[77] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, no. 2, pp.
123–140, 1996.

[78] ——, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32,
2001.

[79] M. Kang, S. K. Gonugondla, and N. R. Shanbhag, “A 19.4 nJ/decision
364K decisions/s in-memory random forest classifier in 6T SRAM
array,” in IEEE European Solid-State Circuits Conference (ESSCIRC),
2017, pp. 263–266.

[80] T. Kobayashi, K. Nogami, T. Shirotori, and Y. Fujimoto, “A current-
controlled latch sense amplifier and a static power-saving input buffer for
low-power architecture,” IEEE Journal of Solid-State Circuits (JSSC),
vol. 76, no. 5, pp. 863–867, 1993.

[81] V. A. Prisacariu, R. Timofte, K. Zimmermann, I. Reid, and L. Van Gool,
“Integrating object detection with 3D tracking towards a better driver
assistance system,” in IEEE International Conference on Pattern Recog-
nition (ICPR), 2010, pp. 3344–3347.

[82] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating
a random forest classifier: Multi-core, GP-GPU, or FPGA?” in IEEE
Annual International Symposium on Field-Programmable Custom Com-
puting Machines (FCCM), 2012, pp. 232–239.

[83] C. Sakr, Y. Kim, and N. Shanbhag, “Analytical guarantees on numerical
precision of deep neural networks,” in International Conference on
Machine Learning (ICML), 2017, pp. 3007–3016.

[84] C. Sakr and N. Shanbhag, “An analytical method to determine minimum
per-layer precision of deep neural networks,” in IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018,
pp. 1090–1094.

[85] J. Choi, S. Venkataramani, V. Srinivasan, K. Gopalakrishnan, Z. Wang,
and P. Chuang, “Accurate and efficient 2-bit quantized neural networks,”
in Proceedings of the SysML Conference, 2019.

[86] R. Sarpeshkar, “Analog versus digital: extrapolating from electronics to
neurobiology,” Neural computation, vol. 10, no. 7, pp. 1601–1638, 1998.

[87] F. Frustaci, M. Khayatzadeh, D. Blaauw, D. Sylvester, and M. Alioto,
“SRAM for error-tolerant applications with dynamic energy-quality
management in 28 nm CMOS,” IEEE Journal of Solid-state circuits,
vol. 50, no. 5, pp. 1310–1323, 2015.

[88] B. Zhang, L.-Y. Chen, and N. Verma, “Stochastic data-driven hardware
resilience to efficiently train inference models for stochastic hard-
ware implementations,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2019, pp. 1388–1392.

Mingu Kang (M’13) is an assistant professor of
Electrical and Computer Engineering at the Univer-
sity of California at San Diego (UCSD), La Jolla,
CA, USA since 2020. He received the B.S. and
M.S. degrees in Electrical and Electronic Engineer-
ing from Yonsei University, Seoul, South Korea, in
2007 and 2009, respectively, and the Ph.D. degree
in Electrical and Computer Engineering from the
University of Illinois at Urbana-Champaign, Urbana,
IL, USA, in 2017.

From 2009 to 2012, he was with the Memory
Division, Samsung Electronics, Hwaseong, South Korea, where he was
involved in the circuit and architecture design of phase change memory. From
2017 to 2020, he was with the IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, USA, where he worked for machine learning acceler-
ator architectures. He is a recipient of MICRO TOP Pick Honorable Mention
2019, IEEE International Symposium on Circuits and Systems (ISCAS) best
Paper Awards in 2016 and 2018, University of Illinois Coordinated Science
Laboratory (CSL) best thesis award in 2018, and Kwanjeong Scholarship from
2012 to 2016. His current research interests include low-power integrated
circuits, architecture, and system for machine learning and signal processing
by leveraging non-von Neumann approaches including in-memory, in-sensor,
and neuromorphic computing with both CMOS and emerging devices.

24

Sujan Gonugondla (S’16) received the Bachelor’s
and Master’s in Technology degrees in Electrical
Engineering from the Indian Institute of Technology
Madras, Chennai, India, in 2014 and the Ph.D.
degree in Electrical and Computer Engineering from
the University of Illinois at Urbana-Champaign, Ur-
bana, IL, USA in 2020. Since June 2020, he has been
with Amazon where he works as a Research Sci-
entist. His research interests are in energy-efficient
integrated circuits, and low complexity algorithms
for machine learning systems, specifically algorithm

hardware co-design for inference under resource-constraints.
Sujan K. Gonugondla is a recipient of the Dr. Ok Kyun Kim Fellowship

2018-19 and the M. E. Van Valkenburg Graduate Research Award 2019-20
from the ECE department at the University of Illinois at Urbana-Champaign,
the ADI Outstanding Student Designer Award 2018 and the SSCS Predoctoral
Achievement award in 2020. He has received Best Student Paper Awards
in International Conference on Acoustics, Speech and Signal Processing
(ICASSP) in 2016, and International conference in Circuits and Systems
(ISCAS) in 2018.

Naresh R. Shanbhag (F’06) is the Jack Kilby
Professor of Electrical and Computer Engineering
at the University of Illinois at Urbana-Champaign.
He received his Ph.D. degree from the University of
Minnesota (1993) in Electrical Engineering. From
1993 to 1995, he worked at AT&T Bell Labo-
ratories at Murray Hill where he led the design
of high-speed transceiver chip-sets for very high-
speed digital subscriber line (VDSL), before joining
the University of Illinois at Urbana-Champaign in
August 1995. He has held visiting faculty appoint-

ments at the National Taiwan University (Aug.-Dec. 2007) and Stanford
University (Aug.-Dec. 2014). His research focuses on the design of energy-
efficient systems for machine learning, communications, and signal processing
spanning algorithms, architectures and integrated circuits. He has more than
200 publications in this area, holds thirteen US patents, and is a co-author of
two books and multiple book chapters.

Dr. Shanbhag received the 2018 SIA/SRC University Researcher Award,
became an IEEE Fellow in 2006, received the 2010 Richard Newton GSRC
Industrial Impact Award, the IEEE Circuits and Systems Society Distinguished
Lecturership in 1997, the National Science Foundation CAREER Award
in 1996, and multiple best paper awards including the 2006 IEEE Solid-
State Society Best Paper of the Year Award. In 2000, Dr. Shanbhag co-
founded and served as the Chief Technology Officer of the Intersymbol
Communications, Inc., which introduced mixed-signal ICs for electronic
dispersion compensation of OC-192 optical links, and became a part of Finisar
Corporation in 2007. From 2013-17, he was the founding Director of the
Systems On Nanoscale Information fabriCs (SONIC) Center, a 5-year multi-
university center funded by DARPA and SRC under the STARnet program.

