IEEE Custom Integrated Circuits Conference 13-2: KeyRAM: A 0.34 μ J/decision 18 k decisions/s Recurrent Attention In-memory **Processor for Keyword Spotting**

Hassan Dbouk, Sujan K. Gonugondla, Charbel Sakr, and Naresh R. Shanbhag University of Illinois at Urbana-Champaign

03/24/2020

Outline

Motivation and Background

- Recurrent Attention Model for KWS
- Implementation
 - Chip Architecture
 - Sparsity-aware IMC Block
 - DM²VM Digital Block
- Measurement Results
- Summary

Motivation

- Speech is a natural mode for humans to interact with intelligent Edge devices
- Edge devices are often constrained in terms of *storage, power,* and *compute resources*
- Keyword spotting (KWS) systems are used to detect specific wake-up words

Motivation

- Speech is a natural mode for humans to interact with intelligent Edge devices
- Edge devices are often constrained in terms of *storage, power,* and *compute resources*
- Keyword spotting (KWS) systems are used to detect specific wake-up words

Goal: An end-to-end energy efficient and low latency solution for keyword spotting

Typical KWS Pipeline

- Feature extraction: Mel-frequency Cepstral Coefficient (MFCC)
- What is a good classifier?

Prior works

NN model	S(80KB, 6MOps)				
	Acc.	Mem.	Ops		
DNN	84.6%	80.0KB	158.8K		
CNN	91.6%	79.0KB	5.0M		
Basic LSTM	92.0%	63.3KB	5.9M		
LSTM	92.9%	79.5KB	3.9M		
GRU	93.5%	78.8KB	3.8M		
CRNN	94.0%	79.7KB	3.0M		
DS-CNN	94.4%	38.6KB	5.4M		

Hello Edge [Zhang, arXiv 2018]

Vanilla RNN for KWS

subset of features to be processed

• Sequential processing: must process the entire MFCC input features

Vanilla RNN for KWS (t=1)

Vanilla RNN for KWS (t=2)

Vanilla RNN for KWS (t=3)

Vanilla RNN for KWS (t=N)

Vanilla RNN for KWS (t=N)

Can we design a better classifier?

Outline

• Motivation and Background

Recurrent Attention Model for KWS

- Implementation
 - Chip Architecture
 - Sparsity-aware IMC Block
 - DM²VM Digital Block
- Measurement Results
- Summary

Recurrent Attention Model (RAM) for KWS

• Originally proposed for image classification [Mnih, NIPS'14]

Recurrent Attention Model (RAM) for KWS

• RAM: processes the input via glimpses, learns what glimpses to process

Recurrent Attention Model (RAM) for KWS

• More glimpses processed \rightarrow more confident decisions

滬 CICC

• Inherent accuracy-complexity (energy & latency) tradeoff

Efficiency of RAM for KWS

• KWS for 12 keywords using the Google Speech dataset

As reported by [Zhang, arXiv 2018]

Efficiency of RAM for KWS

- KWS for 12 keywords using the Google Speech dataset
- RAM achieves a 4.6 × reduction in computational complexity at iso-accuracy

Efficiency of RAM for KWS

- KWS for 12 keywords using the Google Speech dataset
- RAM achieves a 4.6 × reduction in computational complexity at iso-accuracy

Architectural Choices

Digital

In-Memory Compute (IMC)

energy efficient – massive parallelism

non reconfigurable – low precision

滬 CICC

Pros

Cons

Architectural Choices

Cons

Mapping of RAM

- 6 fully connected layers (fc1 to fc6)
- All weights on-chip

layer	d_{in}	$\boldsymbol{d}_{\text{out}}$	B_x	B_w	#MACs	%MACs	Mapped to
fc1	2	63	8	8	189	0.35	DIGITAL
fc2	64	64	8	8	4160	7.63	DIGITAL
fc3	127	127	4	4	16256	29.81	IMC
fc4	254	127	4	4	32385	59.39	IMC
fc5	127	10	8	8	1280	2.35	DIGITAL
fc6	127	2	8	8	256	0.47	DIGITAL

fc3 & fc4: 89% of computations

Outline

- Motivation and Background
- Recurrent Attention Model for KWS

Implementation

- Chip Architecture
- Sparsity-aware IMC Block
- DM²VM Digital Block
- Measurement Results
- Summary

- Main controller
- Two IMC blocks
- Four single-slope ADCs
- Digital processor

- Main controller
- Synchronizes all chip operations
- 6 main modes of operation
- Runs on a 1GHz external clock

- Main controller
- Two IMC blocks
- 512×256 standard 6T SRAM banks
- Execute fc3 and fc4

- Main controller
- Two IMC blocks
- Four single-slope ADCs
- Operate at 10 M Sample/s
- Two 6-b ADCs required per IMC dot product (differential design)

- Main controller
- Two IMC blocks
- Four single-slope ADCs
- Digital processor
- 6kB of SRAM + 64 8b MAC units
- Executes fc1, fc2, fc5, & fc6

Outline

- Motivation and Background
- Recurrent Attention Model for KWS

Implementation

- Chip Architecture
- Sparsity-aware IMC Block
- DM²VM Digital Block
- Measurement Results
- Summary

- Standard 6T SRAM bank
- Multi-bit dot products via four stages

Adapted from [Gonugondla, ISSCC'18]

- Standard 6T SRAM bank
- Multi-bit dot products via four stages

Pulse-width modulated word-lines perform D2A conversion of weights on each bit-line (BL)

- Standard 6T SRAM bank
- Multi-bit dot products via four stages

2

BL discharges are multiplied with the corresponding input data from buffers via charge redistribution

- Standard 6T SRAM bank
- Multi-bit dot products via four stages

Multiplier outputs are summed across the columns via charge sharing across BLs

- Standard 6T SRAM bank
- Multi-bit dot products via four stages

Final dot product voltage is converted to digital via ADCs

Input Sparsity Challenge

- ReLU activation functions cause sparse inputs (~ 50% - 70%)
- Output voltage spread shrinks due to charge sharing

Outline

- Motivation and Background
- Recurrent Attention Model for KWS

Implementation

- Chip Architecture
- Sparsity-aware IMC Block
- DM²VM Digital Block
- Measurement Results
- Summary

DM²VM: Digital Processor

outputs streamed out

on cycles 4-7

- Array of 64 8b MAC PEs
- 6kB of SRAM for weight storage
- Flexible support (fc1, fc2, fc5, fc6)
- Designed to minimize idle cycles when inputs/outputs are streamed in/out
- Completes an $N \times M$ MVM in a fixed number N + M of cycles

Principle of the diagonal major MVM (DM²VM) processor for a 4×4 FC layer

Outline

- Motivation and Background
- Recurrent Attention Model for KWS
- Implementation
 - Chip Architecture
 - Sparsity-aware IMC Block
 - DM²VM Digital Block
- Measurement Results
- Summary

System Performance

- Energy/throughput tunable by varying V_{WL} and number of glimpses
- Measured results per glimpse:

Energy/glimpse	Latency/glimpse		
0.11µJ	18.2µs		

System Performance

- Energy/throughput tunable by varying V_{WL} and number of glimpses
- Measured results per glimpse:

Energy/glimpse	Latency/glimpse		
0.11μ J	18.2µs		

1000imes faster than a typical human reaction time

IMC: consumes 68% of the total energy, and implements 89% of computations

RAM* KeyRAM digital RNN* *estimated from DM²VM measurements

 $2 \times$

 $3.7 \times$

RAM

IMC

 $7.4 \times \text{better energy/dec compared}$ to a digital RNN implementation

3

2.5

2

1.5

0.5

energy/dec [μ]

滬 CICC

Energy Measurements

Measured Classification on Google Speech

correct classification of one keyword after three glimpses

test set accuracy increases with number of glimpses

Chip Micrograph

Technology	65nm		
Die Size	1.78mm × 2.32 mm		
Memory Capacity	38kB		
Nominal Supply	1.0V		
CTRL Frequency	1GHz		
Latency	0.05ms – 0.15ms		
Energy/dec	0.34µJ — 1.043µJ		
Algorithm	RAM		

1.78 mm

ч

2.32 mm

Comparison with State-of-the-art

	ISSCC'17	CICC'18	ESCCIRC'18	VLSI'19	This Work	
Technology	65 nm	65 nm	65 nm	65 nm	65 nm	
Algorithm	DNN	LSTM	LSTM	Binarized-RNN	RAM	
Dataset	TIDIGITS	TIMIT	TIMIT	Google Speech	Google Speech	
# of Classes	11	39	4 ^a	10	7	
Test Accuracy [%]	98.35	80.4	—	90.2	90.38	
On-chip Storage [kB]	747.52	82	32	18	38	
Area [mm ²]	9.61	1.57	1.035	6.2	4.13	
Energy/Decision [µJ]	6.4 ^d	9.54^{d}	0.06	3.36	$0.34 - 1.043^{\rm b} \ (0.57 - 1.62)^{\rm c}$	
Decisions Latency [ms]	37^{d}	$0.77^{ m d}$	12 ^d	0.13	$0.05-0.15^{ m b}$	
# of MACs/Decision	—	—	$5.8 \mathrm{k} - 27.2 \mathrm{k}$	—	$273\mathrm{k}-730\mathrm{k^b}$	
Energy-Delay Product [pJ.s]	$239\mathrm{k^d}$	$7.3\mathrm{k^d}$	720	430	$18 - 152^{\rm b} \ (31 - 236)^{\rm c}$	
Supply Voltage [V]	0.6 - 1.2	0.75 - 1.24	0.575	0.9 - 1.1	1	
Energy Efficiency [TOPS/W]	_	3.08	_	11.7	$1.6 \ (0.91)^{c}$	
^a 4 binary classifiers ^b with changing V_{WI} and # of glimpses ^c with CTRL energy included ^d estimated from reported data						

- Lowest reported decision latency
- More than 23 imes reduction in EDP

Comparison with State-of-the-art

	ISSCC'17	CICC'18	ESCCIRC'18	VLSI'19	This Work
Technology	65 nm	65 nm	65 nm	65 nm	65 nm
Algorithm	DNN	LSTM	LSTM	Binarized-RNN	RAM
Dataset	TIDIGITS	TIMIT	TIMIT	Google Speech	Google Speech
# of Classes	11	39	4^{a}	10	7
Test Accuracy [%]	98.35	80.4	—	90.2	90.38
On-chip Storage [kB]	747.52	82	32	18	38
Area [mm ²]	9.61	1.57	1.035	6.2	4.13
Energy/Decision [µJ]	$6.4^{\rm d}$	9.54^{d}	0.06	3.36	$0.34 - 1.043^{\rm b}$ $(0.57 - 1.62)^{\rm c}$
Decisions Latency [ms]	$37^{\rm d}$	$0.77^{\rm d}$	12^{d}	0.13	$0.05-0.15^{ m b}$
# of MACs/Decision	—	—	$5.8 \mathrm{k} - 27.2 \mathrm{k}$	—	$273\mathrm{k}-730\mathrm{k^b}$
Energy-Delay Product [pJ.s]	$239\mathrm{k^d}$	$7.3\mathrm{k^d}$	720	430	$18 - 152^{\rm b} \ (31 - 236)^{\rm c}$
Supply Voltage [V]	0.6 - 1.2	0.75 - 1.24	0.575	0.9 - 1.1	1
Energy Efficiency [TOPS/W]	—	3.08	—	11.7	$1.6 \ (0.91)^{c}$

^a4 binary classifiers ^b with changing V_{WL} and # of glimpses

^cwith CTRL energy included

^destimated from reported data

- Lowest reported decision latency
- More than $23 \times reduction$ in EDP

滬 CICC

$3 \times -10 \times$ reduction in energy/decision

Outline

- Motivation and Background
- Recurrent Attention Model for KWS
- Implementation
 - Chip Architecture
 - Sparsity-aware IMC Block
 - DM²VM Digital Block
- Measurement Results

Summary

Summary

- Energy efficient and low latency KWS systems are of utmost importance
- We adopt an algorithm-hardware co-design approach by proposing:
 - Novel classification algorithm for KWS using RAM
 - Sparsity-aware IMC-based computations for energy efficient dot product operations
- KeyRAM: a classifier IC in 65nm for KWS achieving state-of-the-art decision latency of 50μ s with $< 0.5\mu$ J/decision

Acknowledgements

This work was sponsored by the AFRL and DARPA under agreement FA8650-18-2-7866 as part of the FRANC program.

Thank you

Backup Slides

Mel-frequency Cepstral Coefficients (MFCC)

