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KeyRAM: A 0.34 uJ/decision 18 k decisions/s
Recurrent Attention In-memory Processor for

Keyword Spotting
Hassan Dbouk, Sujan K. Gonugondla, Charbel Sakr, and Naresh R. Shanbhag

Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, USA.

Abstract—This paper presents a 0.34 uJ/decision deep learning-
based classifier for keyword spotting (KWS) in 65 nm CMOS with
all weights stored on-chip. This work adapts a Recurrent Attention
Model (RAM) algorithm for the KWS task, and employs an in-
memory computing (IMC) architecture to achieve up to 9× savings
in energy/decision and more than 23× savings in EDP of decisions
over a state-of-the art IMC IC for KWS using the Google Speech
dataset while achieving the highest reported decision throughput
of 18.32 k decisions/s.

Index Terms—machine learning, keyword spotting, recurrent
attention networks, in-memory computing

I. INTRODUCTION

Speech has emerged as a natural mode for humans to
interact with intelligent Edge devices including smart phones
and personal digital assistants [1]. Preceding a speech rec-
ognizer with an ‘always-on’ keyword spotting (KWS) system
(Fig. 1) enables such devices to continually sense, detect, and
classify speech segments under stringent energy, computational
and storage constraints. Recently, various deep learning based
KWS classifier algorithms such as deep/convolutional neural
networks (DNNs/CNNs) and recurrent NNs (RNNs) have been
shown to achieve high (> 90%) accuracies [2] but at the
expense of very high computational costs (Fig. 2) making them
unsuitable for deployment on sub-µJ/decision Edge platforms.
Previous KWS IC implementations have been in digital [3]–[5]
and for simple datasets, e.g., TIMIT. Recently, [6] implements a
binarized RNN-based KWS on an in-memory computing (IMC)
architecture for the more complex Google Speech [7] dataset
achieving an energy-efficiency of 3.36µJ/decision.

This work employs an algorithm-hardware co-design ap-
proach to realize KWS for Edge devices with < 1µJ/decision.
To the best our knowledge, this is the first work to propose using
a Recurrent Attention Model (RAM) [8] for KWS and the first
IC implementation of RAM. The use of RAM for the KWS task
reduces the computational complexity of inference compared
to state-of-the-art neural network-based algorithms (Fig. 2) at
iso-accuracy. The proposed RAM algorithm is mapped onto
a multi-bit multi-bank sparsity-aware IMC IC that stores all
model weights on-chip to further increase the energy efficiency.
As a result, up to 9× savings in energy/decision and > 23×
savings in EDP of decisions over state-of-the art IMC ICs for

This work was sponsored by the AFRL and DARPA under agreement FA-
8650-18-2-7866 as part of the FRANC program.
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Fig. 1. A typical keyword spotting (KWS) pipeline processes raw audio in
two stages: feature extraction and classification. The classification stage, which
is implemented via neural networks, dominates the complexity of the KWS
system.
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Fig. 2. The accuracy-complexity-storage trade-off in the recurrent attention
model (RAM) compared to other neural network classification algorithms for
the KWS task with 12 classes using the Google Speech dataset: (a) test
accuracy, and (b) number of parameters vs. number of operations.

KWS is achieved, while realizing the highest reported decision
throughput of 18.32×103decisions/s.

II. RECURRENT ATTENTION MODEL FOR KWS

The proposed RAM for KWS employs a RNN in a feedback
loop to selectively process input subsets (glimpses) in the
feature space before classification thereby reducing the compu-
tational complexity by ∼ 4.6× at similar accuracies (Fig. 2a)
for the same dataset (Google Speech [7]). The RAM algorithm
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Fig. 3. The proposed RAM-based system for KWS: (a) algorithm, and (b) chip architecture.
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Fig. 4. The multi-bit IMC bank: (a) architecture, and (b) sparsity aware
summation scheme that improves the IMC’s dot product accuracy for sparse
input vectors.

was originally proposed for image classification [8] where
inputs are 2D images. To enable audio classification using
RAM, we use Mel-frequency Cepstral Coefficient (MFCC)
features as RAM inputs. Furthermore, while images have spatial
invariance in both dimensions, audio features exhibit only
temporal invariance, therefore we propose a location vector lt
that points to the time index of the glimpse.

The proposed RAM-based algorithm for KWS (Fig. 3a)
employs 6 fully connected layers (fc1 to fc6) to track the
informative features across multiple glimpses t via a hidden
state vector ht. At glimpse t, RAM combines ht−1 with the
input patch xt at location lt to compute output class scores
yt indicating confidence levels, and updates the next glimpse
location lt+1 and the corresponding hidden state vector ht+1.

Precision analysis indicates that layers fc3 (127 × 127)
and fc4 (254 × 127), which account for 89.2% of the total
computational complexity, can be executed with 4-b precision
while the rest need 8-bits. Therefore, fc3 and fc4 are mapped on
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to an IMC sub-system since it is best suited for low-precision
matrix-vector multiplies (MVMs), and the rest (fc1, fc2, fc5,
and fc6) are computed in high (8-b) precision digital. Thus, the
proposed RAM for KWS not only requires fewer operations but
is well-matched to a multi-bit IMC implementation. Moreover,
unlike standard algorithms [2], a RAM-based KWS also enables
a dynamic trade-off between energy and accuracy.

III. CHIP ARCHITECTURE

The proposed KeyRAM architecture (Figure 3b) stores all
weights on-chip and comprises of: 1) two IMC blocks (IMC0
and IMC1) to implement multi-bit MVMs via temporal folding
into a sequence of dot products. The IMC block is based
on the single-bank IMC architecture in [9] which implements
single dot-product per read cycle. Each IMC block in KeyRAM
consists of a standard 6T SRAM 512×256 bit-cell array (BCA)
with per-column multipliers and a cross-column adder. The
two blocks share four 6-b ADCs and implement fc3 and fc4
respectively; 2) a diagonal major MVM kernel (DM2VM) to
efficiently implement fc1, fc2, fc5 and fc6 in digital; and 3) a
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Fig. 7. Measurement results showing: (a) decision throughput and energy for varying VWL and number of glimpses, (b) energy savings of KeyRAM compared
to an all-digital implementation of RAM and RNN at iso-model size, and (c) energy breakdown of KeyRAM across different layers at VWL = 0.7V using three
glimpses.

digital control block (CTRL) for timing synchronization. The
IC is configurable and can perform 2–to–10 way classification.

A. IMC Block

The proposed multi-bit IMC architecture (Figure 4) realizes
sparse dot products efficiently. The IMC (Fig. 4a) stores Bw-bit
weights in the BCA in a column major format and computes
dot-products between these weights and inputs stored in buffers
in three steps: 1) stored digital weights are converted into analog
via concurrently turned on pulse-width modulated word-lines
(WLs), such that the voltage discharge on each bit-line (BL)
is proportional to the multi-bit weight in the memory; 2) the
BL discharges are multiplied with the corresponding input data
from buffers via charge redistribution; and 3) the multiplier
outputs are selectively summed across the columns via charge
sharing across BLs resulting in the final dot product which is
converted to digital via two 6-b single-slope ADCs operating at
a sample rate of 10M Sample/s. The ADC outputs are scaled
and shifted to calibrate for offsets followed by a ReLU non-
linearity. The accuracy of the IMC computations can be traded

cl
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“o
ff

” 

Fig. 6. Measured classifier confidence across glimpses for one input sample
with the true class label ’off’. The IC correctly identifies the location in the
input MFCC feature map which is highly correlated to the class label ’off’.

off with energy by controlling the word-line voltage VWL. The
IMC interface and MVM controller route the ADC outputs to
appropriate input buffers in the DM2VM.

The use of a ReLU activation function increases the input
activations sparsity to ∼ 50% − 70%. Sparse input vectors
present a challenge for the charge sharing summation scheme
used in [9] as the multiplier output voltage spread shrinks. A
sparsity-aware summing method (Fig. 4b) is proposed in which
the per-column multiplier output voltages are selectively charge
shared based on whether the corresponding input element is
zero or not. In the process, the output swing is preserved thereby
improving the ADC accuracy.

B. DM2VM Block

The DM2VM kernel (Fig. 5) digitally computes all MVM
operations in fc1 (2 × 63), fc2 (64 × 64), fc5 (127 × 10), fc6
(127 × 2) with 8-b inputs and 8-b weights. The MVM dot-
products are computed via 64 processing elements (PEs), each
implementing an 8-b×8-b multiply-accumulate (MAC) opera-
tion. The 25-b accumulated dot-product outputs are truncated
to 8-b per algorithmic requirements. The DM2VM processor
is designed to minimize idle cycles when inputs/outputs are
streamed in/out since the diagonal major architecture is able to
complete an N×M MVM in a fixed number N+M of cycles
irrespective of whether N > M or vice-versa. In contrast, an
input (output) stationary architecture requires between 2N+M
(N + 2M ) and N +M cycles, respectively, based on whether
the input/output/both are streamed or not. The DM2VM fetches
weight diagonals from its SRAM where weights are stored in
diagonal major format, begins computation as soon as the first
input is streamed in, and stops exactly when the final output
is streamed out without any stalls. This makes the DM2VM
well-matched to the diverse set of MVM dimensions utilized
by the RAM algorithm.

IV. MEASUREMENTS RESULTS

Measurements on the IC are performed using the Google
Speech dataset [7]. The RAM was trained for 7-way classi-
fication using 11 k data samples each corresponding to a 1 s
keyword sampled at a 16 kHz. The inputs to the classifier on



TABLE I
COMPARISON TABLE.

ISSCC’17 [3] CICC’18 [4] ESCCIRC’18 [5] VLSI’19 [6] This Work

Technology 65 nm 65 nm 65 nm 65 nm 65 nm
Algorithm DNN LSTM LSTM Binarized-RNN RAM

Dataset TIDIGITS TIMIT TIMIT Google Speech Google Speech
# of Classes 11 39 4a 10 7

Test Accuracy [%] 98.35 80.4 − 90.2 90.38

On-chip Storage [kB] 747.52 82 32 18 38

Area [mm2] 9.61 1.57 1.035 6.2 4.13

Energy/Decision [µJ] 6.4d 9.54d 0.06 3.36 0.34− 1.043b (0.57− 1.62)c

Decisions/s 26.8d 1.3 kd 83.3d 7.8 k 6.86k − 18.32kb

# of MACs/Decision − − 5.8 k − 27.2 k − 273 k − 730 kb

Energy-Delay Product [pJ.s] 239 kd 7.3 kd 720 430 18−152b (31− 236)c

Supply Voltage [V] 0.6− 1.2 0.75− 1.24 0.575 0.9− 1.1 1

Energy Efficiency [TOPS/W] − 3.08 − 11.7 1.6 (0.91)c

a4 binary classifiers bwith changing VWL and # of glimpses cwith CTRL energy included destimated from reported data

the chip are 8-channel MFCCs extracted within 40ms windows
with 20ms overlap resulting in a 8 × 49-dimensional feature
vector. The input patch dimension at each glimpse is 8×8 and
the locator is a one-dimensional scalar.

The measured classification accuracy is 90.38% at VWL =
0.7V with 4 glimpses. The classification accuracy improves
with the number of glimpses in proportion to the classifier’s
confidence (Fig. 6). The decision energy and latency linearly
increase with the number of glimpses (Fig. 7a). Combined with
a tunable WL pulse amplitude VWL, the RAM-based KWS
IC incorporates dynamic energy-accuracy trade-offs, e.g., the
energy/glimpse varies from 0.11µJ-to-0.13µJ as VWL varies
from 0.5V-to-0.8V. The measured energy breakdown (Fig. 7c)
shows that fc3 and fc4 which account for 89% of computations
consumes 68% of the total energy consumption. These savings
are attributed to the use of IMC. Comparison with a digital
architecture implementing a standard RNN with the same model
size in Figure 7b shows a 7.3× savings in decision energy of
which 2× and 3.7× is attributed to the use of the modified
RAM algorithm and the IMC, respectively. The CTRL energy
(0.08µJ/glimpse) can be amortized with larger problem sizes.

Table I compares KeyRAM with state-of-the-art digital [3]–
[5] and in-memory [6] KWS IC implementations. KeyRAM
achieves between 3×-to-9× reduction in energy/decision com-
pared to the IMC [6]. In addition, > 23× reduction in
the decision energy-delay product (EDP) compared to other
KWS implementations. The proposed art achieves the highest
reported throughput at 18.32 k decisions/s.

Figure 8 shows the die micrograph of the 65nm CMOS IC
along with its summary.

V. CONCLUSION

This paper presents KeyRAM, a classifier IC for keyword
spotting for edge applications. KeyRAM achieves an energy
efficiency of < 0.5µJ/decision for a multi-class Google Speech
dataset employing an algorithm-hardware co-design approach
thereby meeting the requirements of real-time Edge applica-
tions. The concepts presented in this paper can be extended to

Technology 65nm

Die Size 1.78mm  2.32 mm

Memory
Capacity

38kB

Nominal 
Supply

1.0V

CTRL 
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1GHz

Throughput 6.86k – 18.32k 
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Fig. 8. Die micrograph and chip summary.

other applications such as video inference where data access
costs dominate even more.
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